期刊文献+

Modified methods for culturing myoblasts of rats: Combination of multi-enzymatic digestion and double purification 被引量:3

Modified methods for culturing myoblasts of rats: Combination of multi-enzymatic digestion and double purification
下载PDF
导出
摘要 BACKGROUND: With developments of tissue engineering and genetic engineering, we aim to culture myoblasts, which are characterized by high purity, high quality and high production, for wide application in neural regeneration researches. OBJECTIVE: To modify traditional dissociation method in order to obtain myoblasts, which are characterized by high purity, high quality and high production, and explore the biological properties under in vitro culture. DESIGN: Observational study. SETTING: Basic Institute of Academy of Military Medical Sciences of Chinese PLA. MATERIALS: Four neonatal Wistar rats of 5 days old, both genders and mean body mass of 10 g were selected in this study. The main reagents and devices were detailed as follows: DMEM medium (Gibco Company), fetus bovine serum (FBS, Hycolne Company), collagenase Ⅱ (Sigma Company), trypsin (Sigma Company), dispase Ⅱ (Sigma Company), desmin antibody (Fuzhou Maixin Company), antibody Ⅱ and ABC kit (Wuhan Baster Biotechnology Company), desk centrifuge (KUBATO, Japan), and inverted phase contrast microscope (LEICA DMIRB, Germany). METHODS: The experiment was carried out in the Basic Institute of Academy of Military Medical Sciences of Chinese PLA from June to October 2006. Neonatal rats were sacrificed under sterile condition to obtain skeletal muscles of limbs, which were washed with cold PBS (containing benzylpenicillin and estreptomicina), and muscular tissue was sheared into pieces. Then, those muscular pieces were added with mixed digestive enzyme (containing 2 g/L collagenase Ⅱ + 5 g/L dispase Ⅱ + 0.28 g/L CaCl2) as twice volume as pieces, dealt with mechanical pipetting for 5 minutes and cultured in CO2 incubator for 10 minutes. The operation was done for three times and the muscular pieces were digested for 45 minutes in total. Moreover, cells were suspended again in order to obtain myoblasts from skeletal muscle of neonatal rats. In addition, myoblasts were purified with differential attachment technique and enzyme digestion so as to observe morphological characteristics and growth, draw growth curve, analyze surface structure under scanning electron microscope, and evaluate with Desmin immunohistochemical staining. MAIN OUTCOME MEASURES: Morphological characteristics and growth ofmyoblasts cultured in vitro. RESULTS: ①Growth of myoblasts of skeletal muscle: Primary cells had well growth, mature and differentiation. The positive rate of Desmin was 94% and purification of cells was ideal. Growth curve of cells demonstrated that myoblasts which were characterized by high purification started proliferation plentiful through transient growth lag phase (about at one or two days after inoculation). If myoblasts were not dealt with any interventions, they might become sarcotubule gradually at 3 - 5 days after proliferative phase. During this period, myoblasts maintained a monocaryon-bipolarity state under inverted phase contrast microscope. Furthermore, the growth of cells was the strongest and reproductive activity was the most powerful. This suggested that myotube started to form; in addition, muscle fiber of contractility might form under a well culturing condition. ②Immunocytochemical stain with desmin antibody: Interzonal fiber of desmin from myoblasts showed strongly positive reaction. Positive staining existed in cytoplasm had a high nucleus-cytoplasm ratio. However, myoblasts showed negative or mildly positive reaction. CONCLUSION: It is ideal for modified multi-enzymatic digestion and double purification method to dissociate and purify myoblasts of skeletal muscle; meanwhile, these two methods are both the effective ways to provide convenient conditions to obtain seed cells for neural regeneration researches. BACKGROUND: With developments of tissue engineering and genetic engineering, we aim to culture myoblasts, which are characterized by high purity, high quality and high production, for wide application in neural regeneration researches. OBJECTIVE: To modify traditional dissociation method in order to obtain myoblasts, which are characterized by high purity, high quality and high production, and explore the biological properties under in vitro culture. DESIGN: Observational study. SETTING: Basic Institute of Academy of Military Medical Sciences of Chinese PLA. MATERIALS: Four neonatal Wistar rats of 5 days old, both genders and mean body mass of 10 g were selected in this study. The main reagents and devices were detailed as follows: DMEM medium (Gibco Company), fetus bovine serum (FBS, Hycolne Company), collagenase Ⅱ (Sigma Company), trypsin (Sigma Company), dispase Ⅱ (Sigma Company), desmin antibody (Fuzhou Maixin Company), antibody Ⅱ and ABC kit (Wuhan Baster Biotechnology Company), desk centrifuge (KUBATO, Japan), and inverted phase contrast microscope (LEICA DMIRB, Germany). METHODS: The experiment was carried out in the Basic Institute of Academy of Military Medical Sciences of Chinese PLA from June to October 2006. Neonatal rats were sacrificed under sterile condition to obtain skeletal muscles of limbs, which were washed with cold PBS (containing benzylpenicillin and estreptomicina), and muscular tissue was sheared into pieces. Then, those muscular pieces were added with mixed digestive enzyme (containing 2 g/L collagenase Ⅱ + 5 g/L dispase Ⅱ + 0.28 g/L CaCl2) as twice volume as pieces, dealt with mechanical pipetting for 5 minutes and cultured in CO2 incubator for 10 minutes. The operation was done for three times and the muscular pieces were digested for 45 minutes in total. Moreover, cells were suspended again in order to obtain myoblasts from skeletal muscle of neonatal rats. In addition, myoblasts were purified with differential attachment technique and enzyme digestion so as to observe morphological characteristics and growth, draw growth curve, analyze surface structure under scanning electron microscope, and evaluate with Desmin immunohistochemical staining. MAIN OUTCOME MEASURES: Morphological characteristics and growth ofmyoblasts cultured in vitro. RESULTS: ①Growth of myoblasts of skeletal muscle: Primary cells had well growth, mature and differentiation. The positive rate of Desmin was 94% and purification of cells was ideal. Growth curve of cells demonstrated that myoblasts which were characterized by high purification started proliferation plentiful through transient growth lag phase (about at one or two days after inoculation). If myoblasts were not dealt with any interventions, they might become sarcotubule gradually at 3 - 5 days after proliferative phase. During this period, myoblasts maintained a monocaryon-bipolarity state under inverted phase contrast microscope. Furthermore, the growth of cells was the strongest and reproductive activity was the most powerful. This suggested that myotube started to form; in addition, muscle fiber of contractility might form under a well culturing condition. ②Immunocytochemical stain with desmin antibody: Interzonal fiber of desmin from myoblasts showed strongly positive reaction. Positive staining existed in cytoplasm had a high nucleus-cytoplasm ratio. However, myoblasts showed negative or mildly positive reaction. CONCLUSION: It is ideal for modified multi-enzymatic digestion and double purification method to dissociate and purify myoblasts of skeletal muscle; meanwhile, these two methods are both the effective ways to provide convenient conditions to obtain seed cells for neural regeneration researches.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第1期1-5,共5页 中国神经再生研究(英文版)
基金 the 38th China Postdoctoral Science Foundation, No. 2005038055 the Scientific and Technological Research Projects of Liaoning Province, No. 2005225003-14 the Natural Science Foundation of Liaoning Province, No. 20052204
关键词 myoblast cell skeletal muscle cellular transplantation IMMUNOHISTOCHEMISTRY myoblast cell skeletal muscle cellular transplantation immunohistochemistry
  • 相关文献

参考文献9

二级参考文献85

共引文献38

同被引文献24

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部