期刊文献+

基于RBF神经网络的心磁图插值问题 被引量:1

MCG Interpolation Based on RBF ANN
下载PDF
导出
摘要 心磁图是根据人体心脏微弱磁场测量信号计算得到的医学图像。它反映了人体心脏的电活动,可以给医生提供诊断心脏疾病的信息。为了提高心磁图成像精度,通常需要对心磁检测信号进行插值预处理。本文提出了一种基于RBF神经网络模型的心磁数据插值方法,数值仿真的结果证明,RBF神经网络插值方法比线性插值、BP神经网络插值的精度高,接近三次样条插值的结果。 Magnetocardiogram(MCG) is a kind of medical image based on measuring human heart. It reflects the electromagnetic activity in human heart, which can provide the the magnetic field of diagnosis information of heart diseases. In order to raise the precision of MCG image, the MCGs are obtained through interpolation pre -processing. A new method to solve the interpolation problem in MCG-RBF( Radial Basis Function) ANN( Artificial Neural Network) interpolation is presented in this article. The results of numerical value simulation prove that RBF ANN interpolation is better than linear interpolation and BP ANN interpolation. Its result is close to the cubic spline interpolation.
出处 《现代科学仪器》 2007年第2期43-45,共3页 Modern Scientific Instruments
基金 上海市科学发展基金资助(项目编号:054407061)
关键词 信号处理 RBF网络 心脏磁场 插值 Signal procession RBF ANN bioelectromagnetism interpolation
  • 相关文献

参考文献5

  • 1闻新,周露,王丹力,熊晓英.MATLAB神经网络设计应用[M].北京:科学出版社,2000..
  • 2Poggio T,Girosi F.Networks for approximation and learning[ J ].In:Proc IEEE,1990,78(3):1481~1497
  • 3Moody J,Darken CJ.Fast learning in networks of locally -tuned processing units[ M ].Neural Comput,1989,1 (1):281~294
  • 4Chen S,Cowan C F N,Grant P M.Orthogonal leastsquares learning algorithm for radial basis function net-works[J].IEEETrans Neural Networks,1991,2(1):302~309
  • 5Jiong Yu,Shiqin Jiang,et al.ANN Interpolation in MCG Mapping.Proc.of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,EMBC 2005

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部