期刊文献+

考虑时域硬约束的T-S模糊系统最优控制 被引量:3

Optimal control for T-S fuzzy systems with time domain hard constraints
下载PDF
导出
摘要 针对带有时域硬约束(控制输入约束和状态约束)的T-S模糊系统,提出了一种基于状态反馈的优化控制算法。在系统初始状态小于某个界的情况下,将性能输出的能量作为优化的性能指标,通过最小化系统的不变椭圆域来实现系统优化控制,同时得到依赖于该不变域的满足时域硬约束的充分条件。该多目标控制问题最后归结为求解在一组非线性不等式约束条件下的优化问题,本文给出了该优化问题的解决方法,并分析了该方法的可行性。在倒立摆系统中应用的仿真结果验证了该方法的有效性。 An optimal control algorithm for T-S fuzzy systems with time domain hard constraints including control input constraints and state constraints was proposed, in which the output energy was chosen as performance function with the initial state under a bound. This algorithm was realized by minimizing the invariant ellipsoid of the closed loop system. Some sufficient conditions dependent on the invariant set for the satisfaction of the time domain hard constraints were also derived. The multiobjective design was finally deduced to solve an optimization problem with a set of nonlinear matrix inequalities. The solution for this problem was given, and the feasibility of this scheme was discussed. Simulation results for the application in inverted pendulum validate this control algorithm.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第3期640-645,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金面上项目(60374027) 教育部新世纪优秀人才支持计划
关键词 自动控制技术 T-S模糊系统 时域硬约束 最优控制 非线性矩阵不等式 automatic control technology T-S fuzzy systems time-domain hard constraints optimal control nonlinear matrix inequalities
  • 相关文献

参考文献10

  • 1Goodwin G C,Seron M M,De Doná J A.Constrained Control and Estimation:an Optimization Approach[M].London:Springer,2005.
  • 2陈虹,韩光信,刘志远.基于LMI的约束系统H_∞控制及其滚动优化实现[J].控制理论与应用,2005,22(2):189-195. 被引量:18
  • 3Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Trans Syst Cyber,1985,15(1):116-132.
  • 4Tong S C,Li H H.Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties[J].Information Science,2002,131 (2):165-184.
  • 5Park C W,Park M.Adaptive parameter estimator based on T-S fuzzy models and its applications to indirect adaptive fuzzy control design[J].Information Sciences,2004,159(2):125-139.
  • 6Li J.Wang H O,Niemann D,et al.Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems:an LMI approach[J].Information Science,2000,123:201-221.
  • 7Sugeno M,Kang T.Fuzzy modeling and control of multilayer incinerator[J].Fuzzy Sets Systems,1986,18(3):329-346.
  • 8Tanaka K,Wang H O.Fuzzy Control Systems Design and Analysis:an Linear Matrix Inequality Approach[M].New York:John Wiley Sons Inc,2002.
  • 9Tuan H D,Apkarian P,Narikiyo T,et al.Parameterized linear matrix inequality techniques in fuzzy control system design[J].IEEE Tran on Fuzzy Systems,2001,9(2):324-332.
  • 10Boyd S,El Ghaoui L,Feron E,et al.Linear Matrix Inequalities in System and Control Theory[M].Philadelphia:SIAM,1994.

二级参考文献17

  • 1MAYNE D Q,RAWLINGS J B,RAO C V,et al. Constrained model predictive control: Stability and optimality [ J ]. Automatica, 2000,36(6) :789 - 814.
  • 2CHEN H,ALLGOWER F.A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [ J]. Automatica,1998,34(10): 1205 - 1217.
  • 3DOYLE J C, SMTTH R, ENNS D F. Control of plants with input saturation nonlinearities [ C ]//Proc of American Control Conference.Minneapolis, MN: American Automatic Control Council, 1987:1034- 1039.
  • 4KOTHARE M, CAMPO P, MORARI M, et al.A unified framework for the study of anti-windup designs [ J]. Automatica, 1994,30(12):1869- 1883.
  • 5HODEL A,HALL C. Variable-structure PID control to prevent integrator windup [ J]. IEE Proceedings on Industrial Electronics, 2001,48(2) :442 - 451.
  • 6GOKCEK C,KABAMBA P T,MEERKOV S M.An LQR/LQG theory for systems with saturating actuators [ J]. IEEE Trans on Automatic Control ,2001,46(10): 1529 - 1542.
  • 7TADMOR G. Receding horizon revisited: An easy way to robustly stabilize an LTV system [ J ]. Systems & Control Letters, 1992,18(4) :285 - 299.
  • 8LALL S, GLOVER K. A game theoretic approach to moving horizon control [C]//Advances in Model-Based Predictive Control. London:Oxford University Press, 1994:131 - 144.
  • 9KOTHARE M V, BALAKRISHNAN V, MORARI M. Robust constrained model predictive control using linear matrix inequalities [ J].Automatica, 1996,32(10): 1361 - 1379.
  • 10CHEN H, SCHERER C W, ALLGOWER F.A game theoretic approach to nonlinear robust receding horizon control of constrained systems [ C]//Proc of American Control Conference. Albuquerque,USA:American Automatic Control Council, 1997: 3073- 3077.

共引文献17

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部