摘要
研究了带初值的线性Klein-Gordon方程解算子的可计算性.首先,给出TTE的一些基本概念,然后,通过傅立叶变换把这个偏微分方程转化为积分方程,最后,证明了这个积分方程的解算子是图灵可计算的,从而原方程的解算子也是可计算的.
in this paper we studied Turing computability of the solution operations of the initial- value problems for the linear Klein - Cordon equation. First, we gave some basic definitions of TIE. Second, we transformed the partial differential equation to the integral equation by Fourier transform. Furthermore, we proved that the solution operations of the integral equation are Turing- computable, Finally, the question was solved accordingly.
出处
《佳木斯大学学报(自然科学版)》
CAS
2007年第2期268-269,共2页
Journal of Jiamusi University:Natural Science Edition
基金
国家自然科学基金资助项目(10420130638)