摘要
The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900,970,and 1000 mol^(-1).m^2 for 1,2-ethanediol (12ED),1,2-propanediol (12PD),and 1,3-propanediol (13PD),respectively.These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these sol- vents as a function of time from picosecond to microsecond.The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution.The temperature dependent absorption spectra of the solvated electron in 12ED,12PD,and 13PD have been also investigated.In all the three solvents,the optical spectra shift to the red with increasing temperature.While the shape of the spectra does not change in 13PD,a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures.
The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol^-1·m^2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures.