期刊文献+

结合Fisher判别的手写数字特征提取方法

Method for extracting features of handwritten numeral combining fisher's discriminant
下载PDF
导出
摘要 在手写数字图像的特征提取中,提出一种结合Fisher线性判别的多分辨率Gabor滤波方法,在所有特征点上寻求特定滤波方向上的局部最优滤波频率,以获得最佳滤波效果,同时压缩不相关特征。在MNIST手写数字图像库上的识别实验表明:在小样本情况下,该方法能更准确地抽取手写数字图像特征,识别效果明显优于直接进行Gabor特征提取。 In extracting the features of handwritten numeral, a method bases on multi-resolution Gabor filter which combined Fisher's linear discriminant is presented. According to the method, local optimum filtering frequencies in certain orientations is determined at all of the feature points. The purpose is to obtain the best filtering results and compress the irrelevant features. Experiments for handwritten numeral recognition to MNIST database indicates that the method can extract the features of handwritten numeral more efficiently and the effect of recognition is obviously better than directly extracting Gabor features conditions of small sample.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第8期1870-1872,共3页 Computer Engineering and Design
基金 教育部博士点科研基金项目(20030532004)
关键词 多分辨率Gabor滤波 FISHER线性判别 手写数字识别 特征提取 LIBSVM multi-resolution Gabor filter fisher's linear discriminant handwritten numeral recognition features extracting LIBSVM
  • 相关文献

参考文献12

  • 1Wang X W,Ding X Q,Liu C S.Optimized Gabor filter based feature extraction for character recognition[A].Proc 16th International Conference on Pattern Recognition(ICPR'02)[C].Quebec City,Canada:IEEE Inc,2002.223-226.
  • 2Clausi D,Jemigan E.Designing Gabor filters for optimal texture separability[J].Pattem Recognition,2000,(33):1835-1849.
  • 3万峰,杜明辉.基于ASM和Gabor变换的人脸识别[J].计算机工程与设计,2005,26(2):359-361. 被引量:5
  • 4Huang L L,Shimizu A,Kobatake H.Robust face detection using Gabor filter features[J].Pattern Recognition Letters,2005,(26):1641-1649.
  • 5Xu Y,Zhang X D.Gabor Filterbank and its application in the fingerprint texture analysis[A].Sixth International Conference on Parallel and Distributed Computing,Applications and Technologies (PDCAT'05)[C].Dalian,China:IEEE Inc,2005.829-831.
  • 6Wang X W,Ding X Q,Liu C S.Gabor filters-based feature extraction for character recognition[J].Pattern Recognition,2005,(38):369-379.
  • 7Sung J,Bang S Y,Choi S.A bayesian network classifier and hierarchical Gabor features for handwritten numeral recognition[J].Pattern Recognition Letters,2006,(27):66-75.
  • 8Liu C L,Koga M,Fujisawa H.Gabor feature extraction for character recognition:Comparison with gradient feature[A].Proceeding of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR'05)[C].Seoul,Korea:IEEE Inc,2005.121-125.
  • 9边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 10Chen Z L.LIBSVM:A library for support vector machines[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm,2001/2006.

二级参考文献19

  • 1罗莉,罗强,胡守仁.前馈多层神经网络的一种优质高效学习算法[J].计算机研究与发展,1997,34(2):107-112. 被引量:38
  • 2[1]Cootes T F.Active shape models--their training and application [J].Computer Vision Graphics and Image Understanding,1995,61(1):38-59.
  • 3[2]Cootes T F.The use of active shape models for locating structures in medical images [J].Image and Vision Computing,1994,12(6):355-366.
  • 4[3]Lanitis A.Automatic interpretation and coding of face images using flexible models [J].IEEE Trans PAMI,1997,19(7):743-756.
  • 5[4]Lades M.Distortion invariant object recognition in the dynamic link architecture[J].IEEE Trans Computer,1993,42(3):300- 310.
  • 6[5]Wiskott L.Face recognition by elastic bunch graph matching[A].Intelligent biometric techniques in fingerprint and face recognition [C].CRC Press,1999.355-396.
  • 7[6]Lee T S.Image representation using 2D gabor wavelets [J].IEEE Trans PAMI,1996,(18):959-971.
  • 8[7]Belhumeur P N.Eigenfaces vs.fisherfaces: recognition using class specific linear projection [J].IEEE Trans PAMI,1997,19 (7):711-720.
  • 9[8]Martinez A M,Benavente R.The AR face database [R].CVCTechnical Report #24,1998.
  • 10[9]Cootes T F.Active appearance models [J].IEEE Trans PAMI,2001,23(6):681-685.

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部