期刊文献+

不同应力水平的持续运动对生长期大鼠骨矿含量和力学特性的影响 被引量:6

Effects of Different Impact Training on Mineralization and Mechanical Properties of Growing Rats' Bone
原文传递
导出
摘要 为了探讨不同应力水平的运动对生长期大鼠长骨生长发育的影响。将24只4周龄雌性SD大鼠随机分为3组,即对照组,游泳运动组和跑台运动组,每组8只,游泳运动组和跑台运动组分别进行为期9周,每周5次,每次60 min的游泳和跑台运动。运动结束后取后肢胫骨进行骨矿含量和三点弯曲实验。游泳运动组各项骨矿含量指标皆高于对照组,仅骨灰度密度具有显著性差异。跑台运动组各项骨矿含量指标除骨灰度外都显著高于对照组。生物力学指标中,游泳运动组的弹性载荷非常显著的高于对照组,显著高于跑台运动组,跑台运动组弹性载荷显著高于对照组,最大载荷和弹性载荷非常显著地高于对照组。结果提示,两种应力水平的运动都能够提高胫骨的骨矿含量,跑台运动的作用较强。两种运动对骨的生物力学特性皆有一定的影响,但作用有所不同,跑台运动对骨的抗变形能力的提高高于游泳运动,而游泳运动的对骨的抗断裂能力的提高高于跑台运动。 In order to research the effects of different impact exercises on growing rats' bone growth, 24 female SD rats (4 weeks old ) are randomly assigned to a running group (Run n= 8), a swimming group (Swim, n= 8) and a control group (con, n= 8). During a 9 weeks training session (60 mins/day, 5 days/week), the Run rats are trained at progressively increasing running speeds ( 10-20 m/rain), and weights attached to the tail of the Swim rats from the 4th week and then on. Wet weight, dry weight, ash weight, bone apparent density, bone ash density of the Run rats' tibiae are all significantly higher than those in the Con group, but only bone ash density of the Swim rats is higher than that of the Con rats. Except maximum load, all the data of tibiae' mechanical properties of both of the training groups are all higher than those in the Con group, and the Run group' s maximum deformation and bending deformation and elastic load of the Swim group are much higher than the Con group's (P〈 0.001). In summary, different impact exercises and training have the different effects on the growing bone in different ways and the influences of running training is stronger than that of the swimming training.
出处 《北京体育大学学报》 CSSCI 北大核心 2007年第4期501-503,共3页 Journal of Beijing Sport University
关键词 大鼠 游泳运动 跑台运动 胫骨 骨矿含量 力学特性 rats swimming running tibiae bone mineralization mechanical properties
  • 相关文献

参考文献11

  • 1T.H.Huang,S.C.Lin,F.L.Chang,S.S.Hsieh,et al.Effects of different exercise modes on mineralization,structure,and biomechanical properties of growing boneJ Appl Physiol,2003,95:300-307.
  • 2Haapasalo H,Kannus P,Sievanen H,et al.Effect of long-term unilateral activity on bone mineral density of female junior tennis players[J].J Bone Miner Res 1998;13:310-19.
  • 3Alvarez J.,Balbin M.,Santos F.,et al.Different bone growth rates are associated with changes in the express pattern of types Ⅱ and Ⅹ and collagenase 3 in proximal growth plates of the rat tibia[J].J Bone Miner Res 2000;15:82-94.
  • 4黎小坚,Harold M Frost,朱绍舜,柯华珠.基础骨生物学新观[J].中国骨质疏松杂志,2001,7(2):152-174. 被引量:73
  • 5Frost H,M.On a marrow mediator and estrogen:Their roles in bone strength and "mass"in human females,osteopenias,and osteoporoses-insight from a new paradigm[J].Bone Metab.1998,16:113-123.
  • 6Y.-I.Joo,T.Sone,M.Fukunaga,et al.Effect of endurance on the three-dimensional trabecular bone microarchitecture in young growing rats.[J]Bone,2003,33:485-493.
  • 7Matsumoto T,Nakagawa W,Nishida S,et al.Bone density and bone metaboli markersin active collegiate athletes:findings in long-distance runnerjudoists,and swimmers[J].Int J Sports Med 1997,18:408-412.
  • 8Taaffe DR,Snow-Harter C,Connolly DA,et al.Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes.J Bone Miner Res,1995,10:586-592.
  • 9Swissa-Sivan A,Azoury R,Statter M,Leichter I,et al.The effect of swimming on bone modeling and composition in young adult rats[J].Calcif Tissue Int,1990,47:173-177.
  • 10Simkin A,Leichter I,Swissa A,and Samueloff S.The effect of swimming activity on bone architecture in growing rats.J Biomech,1989,22:845-851.

二级参考文献54

  • 1[20]Teitelbaum SL.Bone resorption by osteoclasts.Science,2000,289:1504-1508.
  • 2[21]Puzas EJ,Lewis GD.Biology of osteoclasts and osteoblasts.In:Orthopaedics.Principles of basic and clinical science,Chapter 3.Bronner F and Worrell RV,Eds,Boca Raton:CRC Press,1999.
  • 3[22]Miller SC,Bowman BM,Smith JM et al.Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles.Anat Rec,1980,198:163.
  • 4[23]Miller SC,Jee WSSS.The bone lining cell:a distinct phenotype?.Calcif Tissue Int,1992,41:1.
  • 5[24]Frost HM.Bone modeling and skeletal modeling errors.Springfield:CC Thomas,1973.
  • 6[25]Frost HM.Osteoporoses;new concepts and some implications for future diagnosis,treatment and research(based on insights from the Utah paradigm),Berlin:Ernst Schering Research Foundation AG,1998:7.
  • 7[26]Farost HM.Bone development during childhood,a tutorial(some insights of a new paradigm).In:Paediatric osteology,Schnau E, Ed,Amsterdam:Elsevier,1996:3.
  • 8[27]Frost HM,A determinant of bone architecture:the minimum effective strain.Clin Orthop Rel Res,1983,175:286.
  • 9[28]Mundy FR.Bone remodeling.In:Primer on the metabolic bone diseases and disorders of mineral metabolism,Fourth edition,Favus MJ, Ed,Lippincott,Williams and Wilkins,1999,Chapter 4.
  • 10[29]Cowin SC,Mechanical modeling of the stress adaptation process in bone.Calcif Tissue Int 1984,36:598.

共引文献72

同被引文献93

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部