期刊文献+

图像索引和相关反馈在RBIR中的应用

Application of image indexing and relevance feedback in RBIR
原文传递
导出
摘要 图像索引和相关反馈是改进基于区域的图像检索(RBIR)的2种有效的方法.本研究在图像索引方面采用随机局部搜索(RLS)算法对图像上的区域进行聚类,并引入倒查文件技术对图像库进行索引;在相关反馈方面,采用基于支持向量机的相关反馈算法来改善检索结果,并提出了一种新的核函数使该算法更适宜基于区域的图像表示.在海量图像数据库上的实验结果说明了该算法的有效性. Image indexing and relevance feedback are two effective ways to improve region - based image retrieval (RBIR). This paper will use randomised local search (RLS) algorithm to cluster the image regions. And then, an indexing scheme similar to the inverted file technology will be introduced. We also propose a support vector machine - based relevance feedback algorithms to refine the retrieval result. A new kernel function is proposed so as to make the algorithm be applicable for region - based representations. Experiment results on large image database demonstrate the effectiveness of the proposed algorithm.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期190-195,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家关键基础研究(973)资助项目(2004CB318109) 福建省教育厅科研资助项目(JB05050)
关键词 图像索引 相关反馈 图像检索 image indexing relevance feedback image retrieval
  • 相关文献

参考文献10

  • 1Jing F,Li M,Zhang H J,et al.Relevance feedback in region-based image retrieval[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(5):672 -681.
  • 2Li J,Wang J Z,Wiederhold G.IRM:integrated region matching for image retrieval[M].New York:ACM Press,2000:147-156.
  • 3Jing F,Li M,Zhang H J,et al.An efficient and effective region -based image retrieval framework[J].IEEE Transactions on Image Processing,2004,13(5):699-709.
  • 4Franti K.Randomised local search algorithm for the clustering problem[J].Pattern Analysis and Applications,2000,3 (4):358-369.
  • 5Tong S,Chang E.Support vector machine active learning for image retrieval[M].New York:ACM Press,2001:107 -118.
  • 6Rubner Y,Tomasi C,Guibas L J.A metric for distributions with applications to image databases[M].Washington:IEE Computer Society,1998:59-66.
  • 7Karkkainen I,Franti P.Stepwise clustering algorithm for unknown number of clusters[C]//Advanced Concepts for Intelligent Vision Systems(ACIVS2002).Belgimn:Ghent University,2002:136-143.
  • 8Davies D,Bouldin D.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224 -227.
  • 9Wang J Z,Li J,Wiederhold G.SIMPLIcity:semantics-sensitive integrated matching for picture libraries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(9):947 -963.
  • 10Joachims T.Making large -scale SVM learning practical[M].Gambridge:MIT Press,1999:41 -56.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部