摘要
超短期负荷预测结果与原有的发电计划之间难免出现偏差。传统的发电计划校正策略对调节的经济性和定量优化分配方面考虑得不够。文中考虑了机组报价曲线的影响,以调节费用最低为目标函数,计及线路输电容量、发电机出力、机组爬坡速率、系统功率平衡等约束条件建立了该问题的数学模型。提出使用β分布函数来代替均匀分布函数的粒子群优化算法,在产生可行解的过程和迭代过程中动态地调整β随机函数的参数,以提高产生可行解的速度和质量。在该算法的基础上进一步提出了加入扰动量的方法,有效地减少了被校正机组的台数,提高了算法的计算效率和实用性。研究结果表明将改进后的算法应用于市场条件下的发电计划偏差校正问题是可行的。
The deviation between ultra short term-load forecast and the original generation plan is unavoidable . The traditional generation plan regulation strategy is insufficient in economy and optimization assignment. Considering the unit bidding curves, this article takes the lowest adjustment cost as the objection function, taking into account transmission capacity, generation output, unit ramping rate and power equilibrium to establish the mathematic model. A β distribution function is proposed to replace the homogeneous distribution function in the particle optimal algorithm. It use a dynamic method to adjust the parameters of β distribution random function to improve the speed and quality of the feasible solution. A revised method which adding perturbation quantity to the new algorithm was given, which reduced the numbers of unit needed to regulate its output, and improved the algorithm's efficiency and utility. The result shows that the revised algorithm can effectively solve the optimal problem for generation plan deviation in power market environment.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2007年第13期111-116,共6页
Proceedings of the CSEE
基金
福建省青年科技人才创新项目(2006F3069)。
关键词
电力市场
发电计划
偏差
优化校正
粒子群优化
power market
generation plan
deviation
optimal regulation
particle swarm optimization