期刊文献+

Study on Agglomeration and Densification Behaviors of Gadolinium-Doped Ceria Ceramics 被引量:1

Study on Agglomeration and Densification Behaviors of Gadolinium-Doped Ceria Ceramics
下载PDF
导出
摘要 By synthesizing reactive powders via a self-sustaining combustion synthesis, the glycine-nitrate process, the gadolinium-doped celia (GDC) with the chemical formula Ce0.8Gd0.2O1.9 was prepared. The resultant powders were dispersed with the terpineol as the dispersant through different methods such as ball milling and high-shear dispersing. Coagulation factor (CF) was used to mark the degree of agglomeration on the nano-scale GDC in this work. The effect of agglomeration on the densification behavior at different sintering temperatures was investigated. The studies indicated that agglomeration retarded the densification at the sintering stage. The powders with better dispersion exhibited a higher sintered density at the same temperature. After effective dispersion treatment, GDC could be fully densified at the sintering temperature of 1300 ℃. The densification temperature was significantly lower than those reported previously. The high sintering kinetics of the ceramics was obtained based on the agglomeration control. By synthesizing reactive powders via a self-sustaining combustion synthesis, the glycine-nitrate process, the gadolinium-doped celia (GDC) with the chemical formula Ce0.8Gd0.2O1.9 was prepared. The resultant powders were dispersed with the terpineol as the dispersant through different methods such as ball milling and high-shear dispersing. Coagulation factor (CF) was used to mark the degree of agglomeration on the nano-scale GDC in this work. The effect of agglomeration on the densification behavior at different sintering temperatures was investigated. The studies indicated that agglomeration retarded the densification at the sintering stage. The powders with better dispersion exhibited a higher sintered density at the same temperature. After effective dispersion treatment, GDC could be fully densified at the sintering temperature of 1300 ℃. The densification temperature was significantly lower than those reported previously. The high sintering kinetics of the ceramics was obtained based on the agglomeration control.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第2期163-167,共5页 稀土学报(英文版)
基金 Project supported by the Key Research Programof the National Natural Science Foundation (90610035)
关键词 gadolinium-doped ceria (GDC) AGGLOMERATION DISPERSION DENSIFICATION sintering temperature CERAMICS rare earths gadolinium-doped ceria (GDC) agglomeration dispersion densification sintering temperature ceramics rare earths
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部