期刊文献+

旋转Timoshenko梁的动力学分析 被引量:4

Dynamic Analysis of Rotating Timoshenko Beams
下载PDF
导出
摘要 针对旋转Timoshenko梁结构,在梁的纵向、横向变形中均考虑横向弯曲以及轴向伸缩的耦合作用,同时在横向弯曲中考虑剪切变形的影响,在柔性梁的2个变形方向上均考虑了变形的二次耦合项,并充分考虑轴向离心力、横向惯性力的作用,利用有限元方法进行离散并利用Hamilton原理建立非线性变形模式下的一种新的Timoshenko梁动力学方程。对一平面旋转梁进行仿真计算,通过分析不同情况下的频率与端点变形位移,说明耦合作用的“软化”效果,以及轴向离心力、横向惯性力对模型的影响。 In this paper, a rotating Timoshenko beam is investigated. The effect of shear deformation is included into flexural deflection. Then, considering the coupling effects of deformations in the extensional and flexural deflection, the second-order coupling terms of deformations in two displacement fields are developed. At the same time, the axial inertial force and transverse distributed force are considered. The new governing differential equations of the beam in the geometrically nonlinear kinematics of deformation are derived using finite element technique and Hamilton's principle. Numerical examples of a rotating Timoshenko beam are studied to analysis the frequency and tip deflection of the proposed methods; and to investigate the effect of axial inertial force and transverse distributed force and the 'softer effects' resulting form the coupling effect, with different angular velocities and high length ratios.
出处 《航空学报》 EI CAS CSCD 北大核心 2006年第6期1092-1096,共5页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10672133)
关键词 TIMOSHENKO梁 耦合项 非线性 Timoshenko beam coupling terms nonlinear
  • 相关文献

参考文献10

  • 1Sharf I.Geometric stiffening in multibody dynamics formulations[J].Journal of Guidance,Control and Dynamcs,1995,18(4):882-891.
  • 2杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证 [J].力学学报,2003,35(2):253-256. 被引量:39
  • 3刘锦阳,洪嘉振.刚-柔耦合动力学系统的建模理论研究[J].力学学报,2002,34(3):408-415. 被引量:45
  • 4Yoo H H,Ryan R R,Scott R A.Dynamics of flexible beams undergoing overall motions[J].Journal of Sound and Vibration,1995,181(2):261-278.
  • 5Pai P F,Nayfeh A H.A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects[J].International Journal for Solids and Structure,1994,31 (9):1309-1340.
  • 6Shi P,McPhee J,Heppler G R.A deformation field for Euler-Bernoulli beams with applications to flexible multibody dynamics[J].Multibody System Dynamics,2001,5:79-104.
  • 7Banerjee,J R,Sobey A J.Energy expressions for rotating tapered Timoshenko beams[J].Journal of Sound and Vibration,2002,254(4):818-822.
  • 8Rao S S,Gupta R S.Finite element vibration analysis of rotating Timoshenko beams[J].Journal of Sound and Vibration,2001,242(1):103-124.
  • 9邹建奇,陆佑方,那景新.转动Timoshenko梁的动力学方程及频率分析[J].应用力学学报,1996,13(4):117-121. 被引量:7
  • 10王勖成.有限单元法[M].第二版,北京:清华大学出版社,1997.

二级参考文献13

  • 1冯冠民,多体系统动力学.理论、计算方法和应用,1992年
  • 2克拉夫 R W,结构力学,1983年
  • 3陆佑方,一般力学(动力学、振动与控制)最新进展
  • 4Banerjee AK.Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints.Journal of Guidance,Control and Dynamics,1994,16(6): 1092~1100
  • 5Zhang DJ,Huston RL.On dynamic stiffening of flexible bodies having high angular velocity.Mech Struct and Mach,1996,24(3): 313~329
  • 6Sharf I.Geometric stiffening in multibody dynamics formulations.Journal of Guidance,Control and Dynamics,1995,18(4): 882~891
  • 7Kane TR,Ryan RR,Banerjee AK.Dynamics of a cantilever beam attached to a moving base.Journal of Guidance,Control and Dynamics,1987,10(2): 139~150
  • 8Mayo J,Dominguez J,Shabana AA.Geometrically nonlinear formulation of beams in flexible multibody dynamics.Journal of Vibration and Acoustics,1995,117:501~509
  • 9Wallrapp O.Standardization of flexible body modeling in multibody system codes,Part I: definition of standard input data.Mech Stru and Mach,1994,22(3): 283~304
  • 10Kane TR, Ryan RR, Banerjee AK. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance Control and Dynamics, 1987, 10(2): 139~151

共引文献83

同被引文献51

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部