期刊文献+

基于属性形态学分析的图像显著极值检测及应用

Salient Image Extrema Detection and Applications Applying Attribute Based Morphological Analysis
下载PDF
导出
摘要 由于图像噪声的存在,使得利用传统的极值检测算法通常会使要提取的显著极值淹没在大量的噪声极值中;同时由于先验知识的缺乏,采用普通滤波技术也往往不能很好的滤除噪声,反而会破坏图像的关键结构。本文提出了一种基于属性形态学分析的图像显著极值检测算法。该算法可以在不需要对图像进行滤波的前提下,从数学形态学的角度对图像极值的显著性进行计算和评估,从而能够较好地提取出显著的极值。在沉浸模拟算法的基础上,给出了基于属性形态学分析显著极值检测的快速算法实现,并将其成功应用在视觉注意选择和独立运动目标检测上。实践证明,该算法不仅具有较好的抗噪声特性,而且快速实用,具有广泛的应用价值。 Salient image extrema detection has been a critical problem due to the importance of extrema in the description of image significant structures. However, due to image noise, traditional extrema detection methods like non-maximum suppression cannot give ideal results. Filtering techniques are commonly used to reduce the negative effect of image noise, but can hardly produce satisfied results because the filter sizes cannot be properly determined beforehand. Accordingly, in this paper, a new salient image extrema detection algorithm is proposed by applying attribute based morphological analysis. During detection, the image extrema saliency is analyzed and valuated by its morphological attributes, and the salient extrema is effectively detected without the need of noise filtering. An efficient algorithm implementation is also provided based on flooding simulations and successfully applied to both cases of visual attention selection and independent moving target detection. It is proved that the algorithm is not only noise-resistant in salient extrema detection, but also applicable to a wide range of applications.
作者 许东 安锦文
出处 《航空学报》 EI CAS CSCD 北大核心 2006年第4期692-696,共5页 Acta Aeronautica et Astronautica Sinica
基金 总装预研课题(413250303)资助项目
关键词 计算机图像处理 显著极值检测 形态学分析 极值显著性 沉浸模拟 salient image extrema detection morphological analysis extrema saliency flooding simulation
  • 相关文献

参考文献16

  • 1Koch C,Ullman S.Shifts in selective visual attention:towards the underlying neural circuitry[J].Human Neuro-biology,1985,4:219-227.
  • 2Itti L,Koch C,Niebur E,et al.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Trans Pattern Anal Mach Intell,1998,20(11):1254-1259.
  • 3Vincent L,Soille P.Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Trans Pattern Anal Mach Intell,1991,13(6):583-598.
  • 4Vincent L.Lecture notes on granulometries,segmentation,and morphological algorithms[EB/OL].http://www.vincent-net.com/luc/papers.1995.
  • 5Breen E J,Jones R.Attribute openings,thinnings,and granulometries[J].Computer Vision and Image Understanding,1996,64(3):377-389.
  • 6Vincent L.Morphological area openings and closings for greyscale images[A].Proc NATO Shape in Picture Workshop[C].1992.197-208.
  • 7Vincent L.Grayscale area openings and closings,their efficient implementation and applications[A].Proc EURASIP Workshop on Mathematical Morphology and Its Applications to Signal Processing[C].1993.22-27.
  • 8Andrade M C,Bertrand G,Araujo A A,et al.Segmentation of microscopic images by flooding simulation:a catchment basins merging algorithm[A].SPIE Proc Nonlinear Image Processing VIII[C].1997.164-175.
  • 9Andrade M C,Bertrand G,Araujo A A,et al.An attribute-based image segmentation method[J].Materials Research,1999,2(3):145-151.
  • 10Vachier C.Morphological scale-space analysis and feature extraction[A].Proc ICIP[C].2001.676-679.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部