期刊文献+

基于线调频小波变换的谐波快速可视化识别方法 被引量:2

Rapid and visual harmonic identification based on Chirplet transform
下载PDF
导出
摘要 线调频小波变换是傅里叶变换、短时傅里叶变换和小波变换的一般形式。在介绍高斯线调频小波变换算法的基础上,提出用线调频小波变换可视化地检测和识别出谐波的特性,即根据对电能质量谐波扰动信号的线调频小波变换矩阵的等高线图,可视化地区分出谐波是固定不变、线性时变或非线性时变,先识别谐波的大致类型,为选取合适的信号分析工具提供保证。仿真结果表明,线调频小波变换的等高线图可以很好地检测出电能质量信号扰动发生的时刻和持续时间。 Chirplet transform is the general form of Fourier transform,short- time Fourier transform and Wavelet transform. The algorithm of Chirplet transform is introduced and used to detect and identify harmonics. Harmonics can be visually classified to non-variable,linear time-varying and nonlinear time-varying according to Chirplet transform matrix contour figures of power quality harmonic signals,based on which an appropriate signal analysis tool is thus selected. Simulation results show that,the Chirplet transform matrix contour figures can effectively detect the beginning time and duration of power quality signal disturbance.
作者 胡国胜 王颖
出处 《电力自动化设备》 EI CSCD 北大核心 2007年第5期49-52,共4页 Electric Power Automation Equipment
基金 国家自然科学基金项目(50077008) 广东省自然科学基金项目(033044)~~
关键词 电能质量 谐波 线调频小波变换 可视化 扰动信号 power quality harmonic Chirplet transform visualization disturbance signal
  • 相关文献

参考文献21

  • 1GAOUDA A M,KANOUN S H,ALAMA M A,et al. Pattern recognition applications for power system disturbance[J]. IEEE Trans on Power Delivery,2002,17(3 ) :677- 683.
  • 2JANIK P,LOBOS T,SCHEGNER P. Classification of power quality events using SVM network [C]//The Seventh Forth Conference of the Institution of Electrical Engineering. NJ:John Wiley & Sons,2004:768-771.
  • 3HUG S,XIE J,ZHU F F. Classification of power of power quality disturbances using wavelet quality disturbances using wavelet and fuzzy support vector machines[C]//Processing of the Fourth International Conference on Machine Learning and Cybernetic. Singapore : IEEE Press, 2005 : 936 - 939.
  • 4CHILUKURI M V ,DASH P K. Multi- resolution S- transform -based fuzzy recognition system for power quality events [J]. IEEE Trans on Power Delivery, 2004,19 ( 1 ) : 323 - 329.
  • 5DASH P K,PANIGRAHI B K,SAHOO K D,et al. Power quality disturbance data compression, detection, and classification using integrated spline wavelet and S- transform I J]. IEEE Trans on Power Delivery,2003,18(2) :595 - 600.
  • 6LIAO Y,LEE J B. A fuzzy-expert system for quality disturbances [ J ]. Electric Power and Energy System, 2004 (26) : 199 - 205.
  • 7赵霞,赵成勇,贾秀芳,李庚银.基于可变权重的电能质量模糊综合评价[J].电网技术,2005,29(6):11-16. 被引量:181
  • 8魏磊,张伏生,耿中行,张柏林,李宁,刘沛津.基于瞬时无功功率理论的电能质量扰动检测、定位与分类方法[J].电网技术,2004,28(6):53-58. 被引量:68
  • 9朱锋峰,任震,黄雯莹.基于两个实值小波变换定量检测电能质量扰动的新方法[J].电网技术,2003,27(11):52-54. 被引量:15
  • 10GAOUDA A M,SALAMA M M,SULTAN M R,et al. Power quality detection and classification using wavelet multi-resolution signal decomposition[J]. IEEE Trans on Power Delivery, 1999,14(4) : 1469- 1476.

二级参考文献58

  • 1李天云,赵妍,韩永强,赵健波.Hilbert-Huang变换方法在谐波和电压闪变检测中的应用[J].电网技术,2005,29(2):73-77. 被引量:77
  • 2李庚银,陈志业,丁巧林,王昕伟.dq0坐标系下广义瞬时无功功率定义及其补偿[J].中国电机工程学报,1996,16(3):176-179. 被引量:144
  • 3张贤达 保铮.非平稳信号分析与处理[M].国防工业出版社,1999,7.324-352.
  • 4林湘宁 刘沛 刘世明 等(Lin Xiangning Liu Pei Liu Shiming et al).电力系统超高速保护的形态学-小波综合滤波算法(A novel integrated morphology wavelet filter algorithm used for ultra high speed protection of power systems)[J]..
  • 5[1]Peter J Tavner, James Perman. Condition monitoring of electrical machines[M].London:Research Studies Press Ltd. John Wiley, 1987.
  • 6[5]何建军(He Jianjun). 小波变换及其在电机故障信号检测和分析中的应用研究(Study on wavelet transform and its application to detection and analysis for fault signals of electric machine)[D]. 重庆:重庆大学 (Chongqing: Dissertation of Chongqing University), 1999.
  • 7[6]DelpratEscudie B, Guillemian P, et al. Asymptotic savelet and gabor analysis:extraxtion of instantaneous frequencies [J]. IEEE Trans. on IT, 1992, 38(2):644-663.
  • 8[7]Milimonfared J,Kelk H M, Nadi S,etal. A novel approach for broken-rotor-bar detection in cage induction motors[J].IEEE Trans. on Industry Applications,1999,35(5):1000-1006.
  • 9[8]Elkasabgy N M, Eastham A R, Dawson G E. Detection of broken brs in the cage rotor on an induction machine[J]. IEEE Trans. on Industry Application,1992,22(1):165-171
  • 10[1]Gaouda A M,Kanoun S H,Alama M A et al.Pattern recognition applications for power system disturbance[J].IEEE Trans on Power Delivery,2002,17(3):677-683.

共引文献536

同被引文献27

  • 1白青刚,夏瑞华,周海斌,廖晓春.采用高性能集成芯片的故障录波装置设计[J].电力系统自动化,2005,29(22):94-96. 被引量:20
  • 2谢勃,卫志农,陈斌.基于LabVIEW DSP模块的手持式电力谐波分析仪[J].电力自动化设备,2007,27(3):89-93. 被引量:7
  • 3王振树,张波,李欣唐.新型电力故障录波监测系统[J].电力系统自动化,2007,31(10):92-96. 被引量:14
  • 4LAI L L,TSE C T,CHAN W L,et al. Real-time frequency and harmonic evaluation using artificial neural networks [J]. IEEE Trans on Power Del 1999,14(1) :52-59.
  • 5RIBEIRO P F. Wavelet transform:an advanced tool for analyzing non-stationary harmonic distortions in power system [C]//The IEEE International Conference on Harmonics in Power System. Bologna, Italy : IEEE, 1994 : 365-369.
  • 6YOON W K,DEVANEY M J. Power measurement using the wavelet transform[J]. IEEE Trans on Instrum and Meas,1998, 47(5) : 1205-1210.
  • 7ANGRISANI L,DAPONTE P,D'APUZZO M,et al. A measurement method based on the wavelet transform for power quality analysis[J]. IEEE Trans on Power Del, 1998,13(4) :990-998.
  • 8WANG Weihong,ZHAO Xiaoming,FENG Xiancheng. Parallel wavelet-based image segmentation using MPI [C] //TENCON 2004. 2004 IEEE Region 10 Conference. Chiang Mai,Thailand: IEEE, 2004 : 97-99.
  • 9YOU J,BHATTACHARYA P. A wavelet-based coarse-to-fine image matching scheme in a parallel virtual machine environment [ J ]. IEEE Trans on Image Processing, 2000,9 (9) : 1547-1559.
  • 10KAHAN W. IEEE standard 754 for binary floating-point arithmetic [S]. New York,USA:The Institute of Electrical and Electronics Engineers,Inc, 1985.

引证文献2

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部