摘要
本文在前文[1]、[2]所得的微分方程和有关边界条件的基础上.采用一种新的整体插值法,求得了弹性圆板在一侧受均载而四周固定的条件下弯曲问题的不用克希霍夫-拉夫假设的一级近似理论的数值结果,并与经典的克希霍夫-拉夫理论[3]和Reissner修正理论[4,5]的结果进行了比较.
Based upon the differential equations and their related boundany condionsgiven in the previous paper [1, 2], using a global interpolation method, this paperpresents a numerical solution to the axisymmetric bending problem of nonKirchhoff-Love theory for elastic circular plate with fixed boundary under uniformsur face loading. All the numerical results obtained in this palper are comparedwith that of Kirchhoff-Love classical theory [3] and E. Reissoer's modifiedtheory [4,5].
出处
《应用数学和力学》
CSCD
北大核心
1997年第5期385-393,共9页
Applied Mathematics and Mechanics
关键词
弹性圆板
K-L假设
整体插体法
弹性力学
elaslticity
circular palte
non-Kirchhoff-Love thosry
global interpolation method