摘要
为了计算大马尔科夫链(简记为LMC)的平稳分布,FeinbergB.N.和ChiuS.S.在文献[1]中提出了单一输入超状态可分解马尔科夫链(简记为SISDMC)的概念,以及切实可行的相应方法为了更加有效地应用此法,本文首先合理地提出了一种优化分解的识别准则,进而深入地探讨了如何确定优良分解中的超状态与其所含状态的个数问题,以及如何根据LMC的具体结构建立一种可以简化节省计算的改进方法的问题文中证明所得的结论解决了文献[2]提出的一些问题。
In order to calculate stationary distributions of large Markov Chains (LMC),in literature Feinberg,B.N.and Chiu,S.S.presented the concept of single input superstate decomposable Markov Chains (SISDMC) and a feasible corresponding method.Aiming at applying this method more effectively,first this paper puts forward a criterion for distinguishing majorization decompositions rationally,then explores further problems on how to determine numbers of superstates and states contained by respective superstates in good decompositions,and how to establish an improved method to reduce computing capacity according to the concrete structure of LMC. In this paper,some of problems left over by literature is resolved,and several guided suggestions using the SISD method to raise efficiency is put forward.
基金
河南省自然科学基础研究基金
关键词
单一输入状态
分解
大马氏链
马氏链
增效
large Markov Chain
Stationary distribution
single input superstate decomposition.