摘要
本文将随机函数ν(x,w)引入随机规划问题z(ν(w))=supy∈Y{Ef(ν(w),y)|Egj(ν(w),y)0,j=1,J}中.对相应的最优化问题的稳定性和最优值函数的可微性作了一些探讨.并得出了z(ν(w))的弱可微的充分性条件及相应的微分表达式.
The general form of stochastic programming problem is: z(ν(w))= sup y∈Y{ E f(ν(w),y)| E g j(ν(w),y)0,j= 1,J },(1) where ν(w) is a random variable or a random vector. In this paper, we bring random function ν(x,w) into stochastic programming problem, analyse the stability of the corresponding optimization problems and study the directional derivatives of optimal value functions. Based on it, we derive the weak differentiability theory of the optimal value functions. These results provide the theoretical base for constructing approximate algorithms, especially, for estimating approximation errors and improving approximate values.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1997年第1期53-62,共10页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词
随机函数
最优化值函数
弱微分性
随机规划
Random Function, Optimal Value Function, Directional Derivative, Weak Differentiability.