摘要
本文提出用经验似然重抽样来bootstrap逼近线性回归模型中的学生化最小二乘估计.我们证明了该方法具有一般s-2项Edgeworth展开,它是二阶相合的而且比经典的方法损失更小.
In this paper an empirical likelihood resampling is proposed for bootstrapping studentizedleast square estimation in linear regression models. It is proved that our method captures ageneral s-2 term Edgeworth expansion and achieves a second order accuracy, furthermore, ithas smaller loss than the classical one in most cases.
出处
《应用概率统计》
CSCD
北大核心
1997年第1期37-44,共8页
Chinese Journal of Applied Probability and Statistics
关键词
经验似然重抽样
回归模型
BOOTSTRAP逼近
empirical likelihood resampling, bootstrapping, studentized least square estimation