期刊文献+

基于修正小波阈值的图像变分分解

Image Variational Decomposition Based on Modified Wavelet Threshold
下载PDF
导出
摘要 Daubechies等人(2004)首先提出了图像的变分分解和小波软阈值之间的联系。小波软阈值会对图像边缘造成过度光滑,使重构图像在边缘附近产生吉布斯震荡现象,为克服该问题,本文用具有更高正则性的分段n次多项式小波阈值和指数阈值做图像分解,得到图像分解的变分泛函的近似最小值。当n越大时,图像分解的变分问题的近似最小值越逼近精确最小值。这样得到了图像的变分分解和修正小波阈值之间的联系。实验结果表明该模型用于图像分解的有效性。 The relation of variational image decomposition and wavelet soft threshold was discovered recently by Daubechies and Teschke. A major issue is that thresholded coefficients entail oversmoothing of edges, coefficients set to zero yield Gibbs oscillations in the vicinity of edges, while coefficients remain corrupted generate artifacts. To overcome this problem, piecewise n-degree polynomial threshold and exponential threshold are used to decompose images in this paper, both of which have higher regularity. The near-minimizer of the variational function of image decomposition is obtained. Here, n may be chosen as any positive number and the bigger the degree n is, the better the approximation quality is. Thus, the connection of image variational decomposition and the modified wavelet threshold are obtained. Experimental results demonstrate the effectiveness of the model.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第5期1035-1037,共3页 Journal of Electronics & Information Technology
基金 国家部委预研基金(51487020203DZ0103)资助课题
关键词 图像分解 变分问题 小波闽值 近似最小值 Image decomposition Variational issue Wavelet threshold Near-minimizer
  • 相关文献

参考文献8

  • 1Rudin L,Osher S,and Fatemi E.Nonlinear total variation based noise removal algorithms.Physica D,1992,60:259-268.
  • 2Osher S,Sole A,and Vese L.Image decomposition and restoration using total variation minimization and the H-1 norm.Multiscale Methods and Simulation,2003,1(3):349-370.
  • 3Daubechies I and Teschke G.Wavelet based image decomposition by variational functionals.Proceedings of SPIE,Wavelet Applications in Industrial Processing.Editor(s):Frederic Truchetet,2004,Vol.5266:94-105.
  • 4Donoho D L and Johnstone I M.Ideal spatial adaptation via wavelet shrinkage.Biometrika,1994,81(3):425-455.
  • 5DeVore R A.Nonlinear approximation.Acta Numerica,Cambridge University Press,1998:51-150.
  • 6Chambolle A,DeVore R A,and Lee N.Nonlinear wavelet image processing:variational problem,compression and noise removal through wavelet shrinkage.IEEE Trans.on Image Process,1998,7(3):319-335.
  • 7杨维,明宗峰,宋国乡,丁宣浩.一族分段n次小波阈值参数滤波器函数[J].华南理工大学学报(自然科学版),2005,33(8):54-57. 被引量:3
  • 8Silvia B and Serena P.Filtered wavelet thresholding methods.Journal of Computational and Applied Mathematics,2004,164(1):39-52.

二级参考文献7

  • 1DeVote R A, Lucie B J r. Fast Wavelet Techniques for Near-optimal Image Processing [ M ]. New York: IEEE Press, 1992.
  • 2Donoho D,Johnstone I. Ideal spatial adaptation by waveley shrinkage [ J ]. Biometrika, 1994,81:425 - 455.
  • 3Silvia Bacchelli, Serena Papi. Filtered wavelet threshol ding methods [ J ]. Journal of Computational and Applied Mathematics ,2004 ( 3 ): 164 - 165.
  • 4Dunford N S. Linear operators: Part Ⅰ [ J ]. General Theory, 1967,62:35 - 39.
  • 5Rudin L I, Osher S, Faemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica ( D), 1992,60:259 - 268.
  • 6Chambolle A, DeVote R A, Lee N. Nonlinear wavelet image processing: Variational problem, compression and noise removal through wavelet shrinkage [ J]. IEEE Trans Image Process, 1998 (7) :319 - 335.
  • 7Ter B M, Romeny Haar. Geometry-driven Diffusion in Computer Vision [ M ]. Boston: MA, Kluwer, 1994.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部