期刊文献+

非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性 被引量:10

MEAN-SQUARE STABILITY OF EULER-MARUYAMA METHODS FOR NONLINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 本文首先将数值方法的均方稳定性的概念MS-稳定与GMS-稳定从线性试验方程推广到一般非线性的情形,然后针对一维情形下的非线性随机延迟微分方程初值问题,证明了如果问题本身满足零解是均方渐近稳定的充分条件,那么当漂移项满足一定的限制条件时,Euler- Maruyama方法是MS-稳定的与带线性插值的Euler-Maruyama方法是GMS-稳定的理论结果. In this paper, the authors investigated the mean-square stability of Euler- Maruyama methods for the nonlinear stochastic delay differential equations. At first, the both definitions of MS-stability and GMS-stability of numerical methods are developed from the linear scalar system to general case. And then, when the analytical solution satisfies the sufficient condition of the mean square stability, we obtained several theoretical results of Euler-Maruyama methods. If the drift term satisfies some restrictions, then Euler-Maruyama methods is MS-stable and Euler-Maruyama methods with linear interpolation is GMS-stable.
出处 《计算数学》 CSCD 北大核心 2007年第2期217-224,共8页 Mathematica Numerica Sinica
基金 国家自然科学基金(10271100) 湖南省教育厅(06B091)资助项目.
关键词 非线性随机延迟微分方程 Euler—Maruyama方法 MS-稳定性 GMS-稳定性 Nonlinear stochastic delay differential equations, Euler-Maruyama methods, MS-stability, GMS-stability
  • 相关文献

参考文献8

  • 1Cao Wanrong,Liu Mingzhu and Fan Zhencheng,MS-stability of the Euler-Maruyama method for stochastic differential delay equations.Applied Mathematics and Computation,2004,159:127-135.
  • 2Liu Mingzhu,Cao Wanrong and Fan Zhencheng,Convergence and stability of the semiimplicit Euler method for a linear stochastic differential delay equation.J.Comput.Appl.Math.,2004,170(2):255-268.
  • 3曹婉容,刘明珠.随机延迟微分方程Euler-Maruyama数值方法的T-稳定性[J].哈尔滨工业大学学报,2005,37(3):303-305. 被引量:10
  • 4曹婉容,刘明珠.随机延迟微分方程半隐式Milstein数值方法的稳定性[J].哈尔滨工业大学学报,2005,37(4):446-448. 被引量:8
  • 5Christopher T.H.Baker,Evelyn Buckwar.Exponential stability in p-th mean of solutions,and of convergent Euler-type solutions,of stochastic delay differential equations.Journal of Computational and Applied Mathematics,2005,184:404-427.
  • 6Wang Zhiyong,Zhang Chengjian,An analysis of stability of Milstein method for stochastic differential equations with delay.Computers and Mathematics with Applications,2006,51:1445-1452.
  • 7Mao X.Razumikhin-Type theoremson exponential stability of stochastic functional differential equations.Stochastic Processes and their Applications,1996,65:233-250.
  • 8Mao Xuerong.Stochastic differential equations and applications.Horwood,New York,1997.

二级参考文献16

  • 1BUCKWER E. Introduction to the numerical analysis of stochastic delay differential equations [ J ]. J Comput Appl Maths, 2000, 125:297 -307.
  • 2KüCHIFER U, PLATEN E. Strong discrete time approximation of stochastic differential equations with time delay [J]. Math Comput Simulation, 2000, 54:189-205.
  • 3CAO WANRONG, LIU MINGZHU, FAN ZhENCHENG.MS - stability of the Euler - Maruyama method for stochastic differential delay equations [ J ]. Applied Mathematics and Computation, 2004, 159: 127-135.
  • 4BURRAGE K, BURRAGE P, MITSUI T. Numerical solutions of stochastic differential equations - implementation and stability issues [ J ]. J Comput Appl Maths, 2000, 125 : 171 - 182.
  • 5SAITO Y, MITSUI T. T - stability of numerical schemes for stochastic differential equations [ J ].World Sci Ser Appl Anal, 1993, 2:333 -344.
  • 6MOHAMMED S E A. Stochastic functional differential equations [ M ]. London: Research Notes in Mathematics, 1984.
  • 7MAO XUERONG. Exponential stability of stochastic differential equations [ M ]. New York: Marcal Dekker,1994.
  • 8MAO XUERONG. Razumikhin - type theorems on exponential stabifity of stochastic functional differential equations [ J ]. Stochastic Processes and their Applications, 1996, 65 : 233 -250.
  • 9TALAY D. Approximation of upper Lyapunov exponents of bilinear stochastic differential systems [ J ].SIAM J Numer Anal, 1991, 28:1141-1164.
  • 10KOLMANOVSKII V, MYSHKIS A. Applied theory of fundamental differential equations [ M ]. Dordrecht:Kluwer Academic Publishers, 1992.

共引文献12

同被引文献78

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部