期刊文献+

树上生灭过程的Dirichlet特征值估计 被引量:1

Estimation of the Dirichlet Eigenvalue of Birth-Death Process on Trees
原文传递
导出
摘要 本文给出树上两类非常返的生灭过程的第一Dirichlet特征值的变分公式.一类是配称测度有限时,给出以根为吸收点的Dirichlet特征值的变分公式;另一类是配称测度无限时,给出树上生灭过程的Dirichlet主特征值的变分公式. In this paper, we give out variational formula for the first Dirichlet eigenvalues of two kinds of transient birth-Death processes on trees. One is that the symmetric measure of the process is finite but the root of the tree is switched to an absorbing state; another is that the symmetric measure is infinite.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第3期507-516,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10121101 10301007) 教育部博士点专项研究基金(20040027009)
关键词 生灭过程 Dirichlet特征值 tree birth-death process Dirichlet eigenvalue
  • 相关文献

参考文献2

二级参考文献12

共引文献32

同被引文献13

  • 1陈木法.Analytic proof of dual variational formula for the first eigenvalue in dimension one[J].Science China Mathematics,1999,42(8):805-815. 被引量:26
  • 2严士健,陈木法.MULTI-DIMENSIONAL Q-PROCESSES[J]Chinese Annals of Mathematics,1986(01).
  • 3Anderson J J.Continuous-Time Markov Chains. Series in Statistics . 1991
  • 4Hou Z T,Guo Q F.Time-homogeneous Markov processes with countable state space. . 1988
  • 5Mao Y H,Zhang Y H.Exponential ergodicity for single birth processes. Journal of Applied Probability . 2004
  • 6Martífinez S,Ycart B.Decay rates and cutofi for convergence and hitting times of Markov chains with countably infinite state space. Advances in Applied Probability . 2001
  • 7Wu B,Zhang Y H.A class of multidimensional Q-processes. Journal of Applied Probability . 2007
  • 8Hou Z T,Guo Q F.Time-homogeneous Markov processes with countable state space. . 1978
  • 9Miclo,L.Relations entre isopérimétrie et trou spectral pour les cha?nes de Markov finies. Probab. Theory Relat. Fields . 1999
  • 10Pakes A G,Tavare S.Comments on the Age Distribution of Markov Processes. Advances in Applied Probability . 1981

引证文献1

  • 1MA YuTao School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China.Birth-death processes on trees[J].Science China Mathematics,2010,53(11):2993-3004. 被引量:2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部