期刊文献+

一类具非局部边界条件的四阶非线性微分方程的对称正解 被引量:2

Symmetric Positive Solutions to a Fourth-Order Nonlinear Differential Equation with Nonlocal Boundary Conditions
原文传递
导出
摘要 本文考虑形如的非线性四阶微分方程非局部边值问题,这里a,b∈L^1[0,1],g:(0,1)→[0,∞)在(0,1)上连续、对称,且可能在t=0和t=1处奇异.f:[0,1]×[0,∞)→[0,∞)连续且对所有x∈[0,∞],f(·,x)在[0,1]上对称.在某些适当的增长性条件下,应用Krasnoselskii不动点定理证明了对称正解的存在性和多重性. We consider the nonlocal boundary value problem for a nonlinear fourthorder ordinary differential equation of the form{u″″(t)=g(t)f(t,u(t)),0〈t〈1,u(0)=u(1)=∫0^1a(s)u(s)ds,u″(0)=u″(1)=∫0^1b(s)u″(s)ds where a,b ∈ L^1[0,1],g:(0,1)→[0,∞) is continuous,symmetric on (0,1) and maybe singular at t=0 and t=1.f:[0,1]×[0,∞)→[0,∞) is continuous and f(·,x) is symmetric on [0,1] for all x E [0,∞).Under some suitable growth conditions,we show the existence and multiplicity of symmetric positive solutions of that above problem by applying Krasnoselskii's fixed point theorem in a come.
作者 孙永平
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第3期547-556,共10页 Acta Mathematica Sinica:Chinese Series
基金 浙江省自然科学基金(Y605144) 浙江省教育厅科研立项项目(20051897)
关键词 对称正解 非局部边值问题 不动点定理 Symmetric positive solution nonlocal boundary value problem fixed pointtheorem integral boundary conditions
  • 相关文献

参考文献1

二级参考文献19

  • 1Bohner, M., Peterson, A. Dynamic equations on time scales: An introduction with applications. Birkhauser,Boston, 2001
  • 2Bohner, M., Peterson, A. Advances in dynamic equations on time scales. Birkhauser, Boston, 2002
  • 3Guo, Y.P, Shan, W.R., Ge, W.G. Positive solutions for second-order m-point boundary value problems.Journal of Computational and Applied Mathematics, 151:415-424 (2003)
  • 4He, Z.M. Existence of two solutions of m-point boundary value problem for second order dynamic equations on time scales. J. Math. Anal Appl., 296:97-109 (2004)
  • 5Hilger, S. Analysis on measure chains-A unified approach to continuous and discrete calculus. Results Math., 18:18-56 (1990)
  • 6Kong,L.J., Kong, Q.K. Multi-point boundary value problems of second-order differential equations (I).Nonlinear Analysis, 58:909-931 (2004)
  • 7Ma, R.Y. Positive solutions for nonhomogeneous m-point boundary value probleins. Computers and Mathematics with Applications, 47:689-698 (2004)
  • 8Ma, R.Y. Existence theorems for a second order m-point boundary value problem. J. Math. Anal. Appl.,211:545-555 (1997)
  • 9Ma, R.Y, Positive solutions for second order three-point boundary value problems, Appl, Math. Left.,14(1): 1-5 (2001)
  • 10Sun, H.R., Li, W.T. Positive solutions for nonlinear three-point boundary value problems on time scales.J. Math. Anal Appl., 299:508-524 (2004)

共引文献4

同被引文献10

  • 1孙红蕊,李万同.偶数阶Sturm-Liouville边值问题的多个正解[J].数学物理学报(A辑),2006,26(5):700-706. 被引量:1
  • 2MA Ruyun, O'REGAN D. Solvability of singular second order m-point boundary value problems [ J ]. J Math Appl, 2005, 301 : 124-134.
  • 3MA Ruytm. Positive solutions for a nonlinear three-point boundary value problem[ J]. Electron J Differential Equations, 1999, 34 : 1-8.
  • 4ZHANG Guowei, SUN Jingxian. Positive solutions of m-point boundary value problems [ J ]. J Math Appl, 2004, 291:406- 418.
  • 5HE X, GE W. Triple solutions for second-order boundary value problem[ J]. Math Anal Appl, 2002, 268:256-265.
  • 6AWERY R I, DAVIS J M, HENDERSON J. Three symmetric positive solutions for lidstone problem by a generalization of the Leggett-Williams theoremE J]. Electronic J Differential Equations, 2000, 40 : 1-15.
  • 7MA Huili. Positive solution for m-point boundary value problems of fourth order[J]. J Math Anal Appl, 2006, 321 ( 1 ) :37- 49.
  • 8MA Huili. Symmetric positive solutions for nonlocal boundary value problems of forth order [ J]. Nonlinear Analysis, 2008, 68:645-651.
  • 9ZHANG Guowei, SUN Jingxian. A generalization of the cone expansion and compression fixed point theorem and applications[J].Nonlinear Anal, 2007, 67:579-586.
  • 10马如云.一类非线性m-点边值问题正解的存在性[J].数学学报(中文版),2003,46(4):785-794. 被引量:24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部