摘要
本文考虑形如的非线性四阶微分方程非局部边值问题,这里a,b∈L^1[0,1],g:(0,1)→[0,∞)在(0,1)上连续、对称,且可能在t=0和t=1处奇异.f:[0,1]×[0,∞)→[0,∞)连续且对所有x∈[0,∞],f(·,x)在[0,1]上对称.在某些适当的增长性条件下,应用Krasnoselskii不动点定理证明了对称正解的存在性和多重性.
We consider the nonlocal boundary value problem for a nonlinear fourthorder ordinary differential equation of the form{u″″(t)=g(t)f(t,u(t)),0〈t〈1,u(0)=u(1)=∫0^1a(s)u(s)ds,u″(0)=u″(1)=∫0^1b(s)u″(s)ds where a,b ∈ L^1[0,1],g:(0,1)→[0,∞) is continuous,symmetric on (0,1) and maybe singular at t=0 and t=1.f:[0,1]×[0,∞)→[0,∞) is continuous and f(·,x) is symmetric on [0,1] for all x E [0,∞).Under some suitable growth conditions,we show the existence and multiplicity of symmetric positive solutions of that above problem by applying Krasnoselskii's fixed point theorem in a come.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第3期547-556,共10页
Acta Mathematica Sinica:Chinese Series
基金
浙江省自然科学基金(Y605144)
浙江省教育厅科研立项项目(20051897)
关键词
对称正解
非局部边值问题
不动点定理
Symmetric positive solution
nonlocal boundary value problem
fixed pointtheorem
integral boundary conditions