期刊文献+

集值向量变分不等式的严格可行性与可解性

Strict Feasibility and Solvability for Multivalued Vector Variational Inequalities
原文传递
导出
摘要 本文研究集值向量变分不等式的严格可行性与可解性之间的关系.证明了如下结果:在一定条件下,只要集值向量变分不等式是严格可行的,那么其一定可解. In this paper, we investigate the relationship of strict feasibility and solvability for the multivalued vector variational inequality. We derive some theorems which state that the multivalued vector variational inequality is solvable whenever it is strictly feasible under suitable conditions.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第3期583-590,共8页 Acta Mathematica Sinica:Chinese Series
基金 四川省基础与应用研究基金(05JY029-009-1)
关键词 集值向量变分不等式 伪单调性 严格可行性 可解性 multivalued vector variational inequality pseudomonotonicity strict fea-sibility solvability
  • 相关文献

参考文献23

  • 1Cottle R. W., Pang J. S., Stone R. E., The linear complementarity problems, New York: Academic Press, 1992.
  • 2Isac G., Topological methods in complementarity theory, Dordrecht: Kluwer Academic Publishers, 2000.
  • 3Giannessi F., Theorems of alterative, quadratic progams and complementarity problems, In: Cottle RW, Giannessi F, Lions JL (ed.), Wiley, New York: Variational Inequalities and Complementarity Problems, 1980.
  • 4Chen G. Y.,Cheng Q. M.: Vecor variational inequality and vector optimization, in: Lecture Notes in Econ. Mathem. Systems, Vol. 285, New Yor, Berlin: Springer-Verlag, 1987, 408-416.
  • 5Chen G. Y., Craven B. D., A vector variational inequality and optimization over an effiecient set, Zeitschrift fur Oper. Res., 1990, 3: 1-12.
  • 6Chen G. Y., Yang X. Q., The vector complementarity problem and its equivalences with the weak minimal element, J. Math. Anal. Appl., 1990, 153: 136-158.
  • 7Chen G.Y., Existence of solutions for a vector variational inequality: an extension of Hartman-Stampacchia theorem, J. Optim. Theory and Appl., 1992, 74: 445-456.
  • 8Fang Y. P., Huang N. J., The vector F-complementary problems with demipseudomonotone mappings, Appl. Math. Lett., 2003, 16: 1019-1024.
  • 9Giannessi F. (eds), Vector variational inequalities and vector equilibria, Dordrechet: Kluwer Academic Pulishers, 2000.
  • 10Yang X. Q., Vector variational inequality and its duality, Nonlinear Anal. TMA, 1993, 95: 729-734.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部