期刊文献+

All General Solutions of Post Equations

All General Solutions of Post Equations
原文传递
导出
摘要 In a previous paper, we have described all reproductive general solutions of a Post equation, supposing that a general solution is known. In this paper we describe all general solutions of Post equation, supposing that a general solution of this equation is known (Theorem 6). As a special case we get the previous characterization of reproductive solutions and a similar result for Boolean equations (Theorem 9). In a previous paper, we have described all reproductive general solutions of a Post equation, supposing that a general solution is known. In this paper we describe all general solutions of Post equation, supposing that a general solution of this equation is known (Theorem 6). As a special case we get the previous characterization of reproductive solutions and a similar result for Boolean equations (Theorem 9).
作者 Dragi BANKOVI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第5期945-950,共6页 数学学报(英文版)
基金 Project supported by Ministry of Science and Environmental Protection of Republic Serbia
关键词 Post algebra Post equation general solution Horn sentence Post algebra, Post equation, general solution, Horn sentence
  • 相关文献

参考文献16

  • 1Lowenheim, L.: Uber die AuflSsungproblem im logischem Klassenkalkul. Sitzungber. Berl. Math. Geselschaft, 7, 89-94 (1908)
  • 2Lowenheim, L.: uber die Auflosung von Gleichungen im logischem Gebietenkal-kul. Math. Ann., 68,169-207 (1910)
  • 3Rudeanu, S.: Boolean Functions and Equations, North-Holland, Amsterdam, 1974
  • 4Bankovic, D.: Formulas of general reproductive solutions of Boolean equations. Fuzzy sets and Systems,75, 203-207 (1995)
  • 5Bankovic, D.: Formulas of general solutions of Boolean equations. Discrete Mathematics, 152, 25-32 (1996)
  • 6Epstein, E.: Lattice theory of Post algebras. Trans. Amer. Math. Soc., 95, 307-317 (1960)
  • 7Rudeanu, S.: Lattice functions and equations, Springer-Verlag, Berlin, 2001
  • 8Serfati, M.: On postian algebraic equations. Discrete Mathematics, 152, 269-285 (1996)
  • 9Serfati, M.: Une methode de resolution des equations postieness a partir d'une solution particuliere. Discrete Mathematics, 17, 187-189 (1977)
  • 10Bankovic, D.: General reproductive solutions of Postian equations. Discrete Mathematics, 169, 163-168(1997)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部