期刊文献+

基于级联阈值决策的变压器故障模糊诊断法 被引量:4

Weighted Fuzzy Identification Based on Cascaded Thresholds Applied for Diagnosing Transformers Faults
下载PDF
导出
摘要 为了解决最大隶属度原则不宜诊断多故障、阈值原则漏诊率和误诊率较高的问题,在提出级联阈值判断原则后构成了级联阈值决策的加权模糊识别法。该法研究各特征气体组分比值在变压器故障诊断中的不同地位,确定加权系数矩阵,并用统计法估计单故障现象的故障隶属度,得到评判矩阵。通过评判矩阵和级联法值判断原则诊断变压器故障,不但诊断单种变压器故障正确率较高,且诊断多种故障同时存在的变压器故障效果也较理想。 Since there are many mistakes when the faults of transformers are justified by traditional methods such as the IEC three-radio method, many mathematic tools are applied for the faults diagnosis of transformers, for instance, fuzzy identification, ANN ( Artificial neural network), data mining approach, rough set, grey theory, cluster analysis, expert system and so on. In this paper, due to these shortcomings, a cascaded thresholds technique is proposed accordingly, the weighted fuzzy identification technique based on cascaded thresholds is then achieved. The weighted coefficients matrix are obtained by analyzing the weightiness of different radios between gases for fault diagnosis, for example, the radio between hydrogen and all the fault gases. Faults membership values of single radio are calculated to obtain a judge matrix by using the statistic technique. The faults diagnosis is completed via analyzing judge matrix using cascaded thresholds technique. This technique for diagnosing transformer faults has been validated using field cases, proven to be capable of diagnosing effectively both single-fault transformer and multi- faults transformer.
出处 《高电压技术》 EI CAS CSCD 北大核心 2007年第4期80-82,共3页 High Voltage Engineering
基金 铁道部科技开发资助项目(2002J036)~~
关键词 级联阈值 加权模糊识别 评判值矩阵 故障诊断 隶属度 变压器 cascaded thresholds weighted fuzzy identification judge matrix faults diagnosis membership values transformer
  • 相关文献

参考文献16

  • 1Lee H J, Park D Y, Ahn B S, et al. A fuzzy expert system for the integrated fault diagnosis[J]. IEEE Trans on Power Delivery, 2000,15(2): 833-838.
  • 2Chen W H, Liu C W, Tsai M S, et al. On-line fault diagnosis of distribution substations using hybrid eause-effeet network and fuzzy[J]. IEEE Trans on PWRD, 2000, 15(2) : 710-717.
  • 3宋斌,于萍,廖冬梅,罗运柏.变压器故障诊断中溶解气体的模糊聚类分析[J].高电压技术,2001,27(3):69-71. 被引量:33
  • 4Su Q, Mi C, Lai L L, et al. A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer[J]. IEEE Trans on PWRS, 2000,15(2):593-598.
  • 5Min S W, Sohn J M, Park J K, et al. Adaptive fault section estimation using matrix representation with fuzzy relations[J]. IEEE Trans on Power System, 2004,19(2):842-848.
  • 6Guardado J L, Naredo J L, Moreno P, et al. A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis[J]. IEEE Trans on Power Delivery, 2001, 16(4): 643-647.
  • 7Huang Y C. Evolving neural nets for fault diagnosis of power transformers[J]. IEEE Trans on PWRD, 2003, 18(3) : 843-848.
  • 8Narendra K G, Sood V K, Khorasani K, et al. Application of a radial basis function (RBF) neural network for fault diagnosis in a HVDC system[J]. IEEE Trans on PWRS, 1998, 13(1) : 177-183.
  • 9Wang Z Y, Liu Y L, Griffin P J. A combined ANN and expert system tool for transformer fault diagnosis[J]. IEEE Trans on Power Delivery, 1998, 13(4) : 1224-1229.
  • 10Huang Y C. A new data mining approach to dissolved gas analysis of oil-insulated power apparatus[J]. IEEE Trans on Power Delivery, 2003, 18(4) : 1257-1261.

二级参考文献26

共引文献254

同被引文献65

引证文献4

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部