期刊文献+

Small Excess and the Topology of Open Manifolds with Ricci Curvature Negatively Lower Bounded

Small Excess and the Topology of Open Manifolds with Ricci Curvature Negatively Lower Bounded
下载PDF
导出
摘要 In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negatively lower bounded is of finite topological type provided that the conjugate radius is bounded from below by a positive constant and its Excess is bounded by some function of its conjugate radius, which improves some results in [4].
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期16-21,共6页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(10371047)
关键词 open manifolds Ricci curvature conjugate radius critical point Excess function triangle comparison theorems 开流形 拓扑 超出量 下界 Ricci曲率
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]Abresh U and Gromoll D. On compact manifolds of nonnegative Ricci curvature[J]. Jour. Amer. Math.Soc., 1990,3:355~374.
  • 2[2]Dccarmo M and Xia C Y. Ricci curvature and the topology of open manifolds[J]. Math. Ann. , 2000,316:391~400.
  • 3[3]Dai X and Wei G F. A comparison-estimate of Toponogov type for Ricci curvature[J]. Math. Ann. ,1995,303:297~306.
  • 4[4]Grove K and Shiohama K. A generalized sphere thcorem[J]. Ann. Math. , 1997,106:201~211.
  • 5[5]Machigashira Y. Complete open manifolds of nonnegative radial curvature[J]. Pacific J. Math. , 1994,165:153~160.
  • 6[6]Ordway D, Stephens B and Yang D G. Large volume growth and finite topological typc[J]. Proc. Amer. Math. Soc. , 2000,128:1191~1196.
  • 7[7]Sha J P and Shen Z M. Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity[J]. Amer. Jour. Math. , 1997,119:1399~1404.
  • 8[8]Shcn Z M. Complete manifolds with nonncgativc Ricci curvature and large volume growth[J]. Invcnt.Math. , 1996,125:393~404.
  • 9[9]Shiohama T. On the Exccss of open manifolds[J]. Proc. Symp. Math. , 1993,54(3):577~584.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部