期刊文献+

The Optimal Weighted Combinational Forecasting with Constant Terms 被引量:1

The Optimal Weighted Combinational Forecasting with Constant Terms
下载PDF
导出
摘要 We propose a model based on the optimal weighted combinational forecasting with constant terms, give formulae of the weights and the average errors as well as a relation of the model and the corresponding model without constant terms, and compare these models. Finally an example was given, which showed that the fitting precision has been enhanced.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期109-113,共5页 数学季刊(英文版)
基金 Supported by the Natural Science Foundation of Henan Province(994053200)
关键词 combinational forecasting constant term combinational weight fitting deviation 常数项 组合预测 加权 优化
  • 相关文献

参考文献3

  • 1TANG Xiao-wo. The optimal combinational forecasting method and its application[J]. The Mathematical Statistics and Managements, 1992, (1): 31-35.
  • 2ZHANG You-lane et al. The optimal weighted combinational forecasting and its application[J]. The Quantity Economy and the Technical Economy Study, 1997,(10): 66-68.
  • 3XIE Bang-jie. Linear Algebra[M]. Beijing: The People Education Publishing House, 1978.

同被引文献15

  • 1Yang X S. Nature-inspired metaheuristic algorithms[M]. New York: Luniver Press, 2008.
  • 2Nezih A, Lewis A L. Service parts management: demand forecas- ting and inventory control[M]. London: Springer Press, 2011.
  • 3Yager R R. Induced aggregation operators[J]. Fuzzy Sets and Systems, 2003, 137(1): 59-63.
  • 4Xu Z S, Da Q L. The ordered weighted geometric averaging op- erators[J]. International Journal of Intelligent Systems, 2002, 17(6) : 709 - 716.
  • 5Snyder R D, Ralph D K, Anne B O, et al. Forecasting for in- ventory control with exponential smoothing [J].International Journal of Forecasting, 2002, 18(1) : 5 - 18.
  • 6Ji L G, Zhang S N, Zhou M. A new GM(1,1) model for predic- ting oscillation date sequence [ C ] // Prognostics & System Health Management Conference, 2011 : 257 - 259.
  • 7Suykens J A K, Van Gestel T, De Brabanter J, et al. Least squares support vector machines [M]. Singapore: World Scien- tific Publishing Co. Pte. Ltd. , 2002.
  • 8Olivier C, Vladimir V, Olivier B, et al. Choosing multiple pa- rameters for support vector machines[J]. Machine Learning, 2002, 46(7): 131-159.
  • 9Gavin C C, Nicola L C T. Improved sparse least-squares sup- port vector machines[J]. Neurocomputing, 2002, 48 (10) : 1025 - 1031.
  • 10Dai C H, Chen W R, Zhu Y F, et al. Seeker optimization algo- rithm for optimal reactive power dispatch[J]. IEEE Trans. on Power Systems, 2009, 24(3): 1218- 1231.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部