期刊文献+

Φ200mm太阳能用直拉硅单晶生长速率研究 被引量:7

Study on Growing Rate in Φ200mm CZ Si Growth
下载PDF
导出
摘要 介绍了Φ200mm的太阳能用直拉硅(CZ Si)单晶生长中,采用热屏、复合式导流系统及双加热器改造直拉炉的热系统,进行不同热系统下的拉晶试验,平均拉速从0.6 mm/min提高到0.9 mm/min。用有限元法模拟了氩气的流场及单晶炉的热场,模拟结果表明:改造后的氩气流场被优化,界面附近的晶体纵向温度梯度增加,熔体纵向温度梯度减小。 The experiments of thermal system Φ200 mm CZ Si growth were introduced, using heat shield, composite argon duct system and double-heater modified system. Average pulling rate could increase from 0.6 mm/min to 0.9 mm/min. Argon flow and temperature fields were simulated by finite element method (FEM). Numerical simulation results indicated that argon flow field is optimized in modified system. The difference of temperatures nearby the interface increased in the crystal, but reduced in the melt.
出处 《半导体技术》 CAS CSCD 北大核心 2007年第2期106-108,120,共4页 Semiconductor Technology
基金 国家自然科学基金资助项目(60576002)
关键词 太阳能直拉硅 热屏 双加热器 有限元法 CZ Si heat shield double-heater finite element method (FEM)
  • 相关文献

参考文献7

  • 1施正荣.晶体硅太阳能电池的现状和发展[C]//中国第七界光伏会议.杭州,2002:350.
  • 2任丙彦,赵龙,傅洪波,曹中谦,张学强.复合式热屏对Φ200mmCZSi单晶生长速率和氧含量的影响[J].Journal of Semiconductors,2005,26(9):1764-1767. 被引量:6
  • 3HAHN S H,TSUKADA T,HOZAWA M,et al.Global analysis of heat transferin Si CZ furnace with specular and diffuse surfaces[J].J Cryst Growth,1998,191:413-420.
  • 4TAKANO K,SHIRAISHI Y,MATSUBARA J,et al.Global simulation of the CZ silicon crystal growth up to 400mm in diameter[J].J Crystal Growth,2001,229:26-31.
  • 5XU Y S,LIU C C,WANG H Y,et al.The marangoni convection and the oxygen concentration in Czochralski-silicon grow[J].J Cryst Growth,2003,254:298.
  • 6KINNEY T A,BORNSIDE D E,BROWN R A.Quantitative assessment of an integrated hydrodynamic thermal capillary model for large-diameter Czochralski growth of silicon:comparison of predicted temperature field with experiment[J].J Cryst Growth,1993,126:413.
  • 7刘永才,阮永丰.有限元法用于晶体生长形态的研究[J].天津大学学报,2000,33(2):185-191. 被引量:5

二级参考文献19

  • 1[1] Ottosen N,Peterson H.Introduction to the finite element method[M].Prentice Hall,1992.
  • 2[2] Thompson J F,Warsi Z U A,Mastin C W.Numerical Grid Generation[M].North-Holland,1985.
  • 3[3] Thompson J F,Warsi Z U A,Mastin C W[J].Comput Phys,1982,47:1~108.
  • 4[4] Christodoulou K N,Scriven L E.J Comput Phys,1992,99:39.
  • 5[5] Tsiveriotis K,Brown R A.Inter J for Numer Methods in Fluids,1992,14:981.
  • 6[6] Brush L N,Sekerka R F,Cryst J.Growth,1989,96:419.
  • 7[7] Yokoyama E,Kuroda T.Phys Rev A,1990,41:2038.
  • 8[8] Sethian J A,Strain J,J Comput.Phys,1992,98:4425.
  • 9[9] Reddy J N.An Introduction to the Finite Element Method[M].McGraw-Hill,1984.
  • 10[10] Taylor J E,Cahn J W,Handwerker C A.Surface motion by surface diffusion[J],Acta Metall Mater,1992,40(7):1443.

共引文献10

同被引文献58

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部