期刊文献+

半线性椭圆方程正解的存在性和唯一性

原文传递
导出
摘要 本文致力于研究半线性椭圆方程正解的存在性,唯一性和非退化性;给出了保证我们所考虑的问题存在正解的一个充要条件;证明了如果某类半线性椭圆问题的正解是唯一的和非退化的,则对问题中的微分算子做小扰动后其正解也是唯一的和非退化的.作为推论,证明了正解的唯一性在区域的小扰动下是不变的.
出处 《中国科学(A辑)》 CSCD 北大核心 2007年第5期559-572,共14页 Science in China(Series A)
基金 国家自然科学基金资助项目(批准号:10671064 10171029)
  • 相关文献

参考文献9

  • 1Dancer E N. The effect of domain shape on the number of positive solutions of certain weakly nonlinear equations. J Diff Eqns, 1988, 74:120-156
  • 2Grossi M, Pistoia A. On the effect of critical points of distance function in superlinear elliptic problems. Adv Diff Eqns, 2000, 5:1397-1420
  • 3Ni W M, Nussbaum R D. Uniqueness and non-uniqueness for positive solutions of △u+f(u, r) = 0. Comm Pure Appl Math, 1985, 38:67-108
  • 4Damascelli L, Grossi M, Pacella F. Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via maximum principle. Ann Inst Henri Poincare Analyse non Lineaire, 1999, 16: 631-652
  • 5Kawohl B. Rearrangement and convexity of level sets in PDE. In: Lecture Notes in Math, Vol 1150, New York: Springer-Verlag, 1985
  • 6Zou H. On the effect of domain geometry on uniqueness of positive solutions of △u + u^p = 0. Annali della Scuola Normale Superior di Pisa, 1994, XXI: 343-356
  • 7Berestycki H, Nirenberg L, Varadhan S R S. The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm Pure Appl Math, 1994, XLVII: 93-101
  • 8Gidas B, Spruck J. A priori bounds for positive solutions of nonlinear elliptic equations. Comm Part Diff Eqns, 1981, 6:883-901
  • 9de Figueiredo D G, Lions P L, Nussbaum R D. A priori estimates and existence of positive solutions of semilinear elliptic equations. J Math Pures et Appl, 1982, 61:41-63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部