期刊文献+

乘积图生成树的Wiener数问题 被引量:1

On the Wiener Index of Cartesian Product Graphs
下载PDF
导出
摘要 研究了给定一个连通图,如何确定其Wiener数最小的生成树问题。Dobrynin等构造了超立方体的两类Wiener数“很小”的生成树,并进一步猜想这两类树都是Wiener数最小的生成树。利用归纳推理及递归关系,对更一般的且具有良好拓扑性质和较高网络模型应用价值的乘积图,如G1×G2、Kmn等,构造了相应的生成树并计算了它们的Wiener数的值,以期获得这些乘积图Wiener数最小的生成树。这些结果推广了Dobrynin关于超立方体的结果。 This paper focuses on the problem: finding a spanning tree of a graph with minimum Wiener number. Dobrynin constructed two types of spanning trees for hypercube and further conjectured that these trees are the minimum spanning trees (with respect to the Wiener number). In this paper, we construct some spanning trees for more general graphs: Cartesian product graphs (known with good topological properties and excellent network parameter) such as G1×G2、Kn^m. etc., in an attempt to find their minimum spanning trees. Our result generalizes that of Dobrynin's. In our study, the mathematical in duction and recurrence relation techniques will play important roles.
作者 林建晦
出处 《莆田学院学报》 2007年第2期7-9,14,共4页 Journal of putian University
关键词 生成树 Wiener数 乘积图 spanning tree Wiener index cartesian product graphs
  • 相关文献

参考文献1

  • 1Andrey A. Dobrynin,Roger Entringer,Ivan Gutman. Wiener Index of Trees: Theory and Applications[J] 2001,Acta Applicandae Mathematicae(3):211~249

同被引文献4

  • 1ZHANG Fuji, GUO Xiaofeng. Redncible chains of severaltypes of 2-conreeted graphs[J]. Discrete Math, 1992, 105:285-291.
  • 2GUO Xiaofeng,ZHANG Fuji. K-Resonant henzenoid systems and K-cyele resonant graphs[J]. J ChemInforrnCo- mpnt Sci,2001,41:480-483.
  • 3OHKAMI N,MOTOYAMA A, YAMAGUCHI T,et al, Graph-theoretical analysis of the Clar's aromatic sextet [J]. Tetrahedron,1981,37 : 1113-1122.
  • 4VOGLER H, TRINAJSTIC N. The conjugated circuit model on the geometries of armelated[J]. Theoret Chim Acta, 1988,73:437-448.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部