摘要
主要讨论布朗单样本轨道的重分形分析特征,获得布朗单W={W(s):s∈R+N}样本轨道关于矩形增量的“快点集”的Hausdorff维数结果:对任意T>0,0≤α≤1。
In this paper, the multifractal analysis about sample paths of Brownian sheet W={W(s):s∈R+^N} is discussed. The Hansdorff dimension results of fast points determinded by rectangle increments of Brownian sheet is obtained, and it is shown that for any T〉0 and 1≥α≥0,dim{s∈(0,T]^N:lim sup h=(h1,h2)↓0|W|((s,s+h])|/√2|(s,s+h]|log1/|(s,s+h]|≥α}=N(1-α^2)
出处
《莆田学院学报》
2007年第2期34-37,57,共5页
Journal of putian University
基金
福建省自然科学基金资助项目(2006J0103)