期刊文献+

关于智能优化方法的集聚性与弥散性问题 被引量:9

Centralization and decentralization of intelligent optimization
下载PDF
导出
摘要 在简要叙述智能优化方法中机制产生的原理和方式的基础上,引入了智能优化算法所应具有的2种基本属性——集聚性和弥散性.描述了二者与算法收敛性的关系,指出了二者对于分析和构造算法的重要性,并结合实例进行了分析.最后根据算法的集聚性与弥散性,从算法群体进化角度研究了算法中的机制融合方法并结合实例进行了说明. On the basis of a brief analysis of principles and means for the generation of mechanisms in intelligent optimization, centralization and decentralization, that are basic properties of intelligent optimization, are introduced. The relationship between these two properties and convergence is described. The significance of these two properties to analysis and construction of algorithms is proposed. Finally, using an example based on the centralization and decentralization of intelligent optimization, the mechanism combination of algorithm is explored from the point of view of population evolution. The practical examples are given.
出处 《智能系统学报》 2007年第2期48-56,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60374069) 高等学校优秀青年教师科研奖励计划(20010248)
关键词 智能优化方法 集聚性与弥散性 机制融合 算法进化 intelligent optimization centralization and decentralization mechanism combination algorithm evolution
  • 相关文献

参考文献46

  • 1[1]METROPOLIS N,ROSENBLUTH A,ROSENBLUTH M,et al.Equation of state calculations by fast computing machines[J].Journal of Chemical Physics,1953,21:1087-1092.
  • 2[2]HOLLAND J H.Adaptation in natural and artificial systems[M].Ann Arbor:The University of Michigan Press,1975.
  • 3[4]COLONI A,DORIGO M,MANIEZZO V.Distributed optimization by ant colonies[A].Proceeding of 1st European Conference of Artificial Life[C].Paris,France,1991.
  • 4[5]KENNEDY J,EBERHART R.Particle swarm optimization[A].Proceeding of IEEE International Conference on Neural Networks[C].Piscataway,NJ,1995.
  • 5[6]SUN Chengyi,SUN Yan,LI Junwei.Mind evolution based machine learning:framework and the implementation[A].Proceedings of the IEEE International Conference on Intelligent Engineering System[C].Vienna,Austria,1998.
  • 6[7]STORN R,PRICE K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R].TR-95-012,ICSI,March,1995.
  • 7[8]GIDAS B.Nonstationary Markov chains and convergence of the annealing algorithm[J].Journal of Statistical Physics,1985,39:73-131.
  • 8[9]RUDOLPH G.Convergence analysis of canonical genetic algorithms[J].IEEE Transactions on Neural Networks,1994,5(1):96-101.
  • 9[10]MICHALEWICZ Z.Genetic algorithms + data structure=evolution programs[M].New York:Springer-Verlag,1996.
  • 10[11]VAN DEN BERGH F.An analysis of particle swarm optimizers[D].Pretoria:University of Pretoria,2002.

二级参考文献5

  • 1S te in,M.L arge sam p le properties of s im u lations us ing L atin hypercube sam p ling[].T echnom etrics.1987
  • 2W E H art.A Convergence A na lys is of unconstra ined and Bound Constra ined Evo lu tionary PatternSearch[].Evo lu tionary Com pu tation.2001
  • 3C A udet,J D enn is.A Pattern Search F ilter M ethod for N on linear P rogramm igh w ithoud D erivatives[]..2000
  • 4R M L ew is and V T orczon.Pattern search a lgorithm s for hound constra ined m in im ization[].S IAMJourna l on O ptim ization.1999
  • 5T G K o lda,R M L ew is,V T orczon.O ptim ization by D irect Search:N ew Perspective on Som e C lass ica land M odern M ethods[].S IAM REV IEW.2003

共引文献1

同被引文献55

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部