期刊文献+

椭圆-椭圆不适合边界的解析方程及其干涉判断 被引量:1

No Fit Boundary Analytic Equation and Interference Detection for Ellipse-ellipse
下载PDF
导出
摘要 在医疗内外科手术,虚拟装配等计算机可视化领域中,经常需检测椭圆-椭圆的干涉性。为了更好地进行干涉判断,根据椭圆-椭圆外切的代数条件——广义特征多项式具有正的重根,以及进一步证明出的该正重根的唯一性结论,利用仿射变换和逆变换方法,推导出了椭圆-椭圆的不适合边界(NFB)解析方程。根据该解析方程不仅可以直接对任意两个椭圆之间的干涉性做出精确判断,并且可由此绘出NFB的轨迹图,同时使用可视化方法给出了快速粗略的判断。在医学影像诊断上这两种方法可结合应用。 In many computer visualized fields such as medical and surgical operations and virtual assembly, it is of ten neecessary to detect the interference between ellipses. The No Fit Boundary(NFB) of ellipse-ellipse is obtained according to the algebraic condition of exterior contact of ellipse-ellipse. To be specific, its generalized characteristic polynomial has positive double roots, which we proved further has only a double, root by using the affine transformation and inverse affine transformation, his easy to detect interference accurately between two ellipses using NFB analytic equation. The trajectory mapped by NFB can also detect the interfer ence quickly and visually. The above two methods can be used together in medicine.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第5期917-921,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60073036 50275019 50335040 50575031) 高等学校博士点专项科研基金资助项目(20010141005)
关键词 椭圆 干涉 不适合边界 广义特征多项式 碰撞检测 医疗 ellipse, interference, no fit boundary (NFB), generalized characteristic polynomial, collision detection, medical treatment.
  • 相关文献

参考文献3

二级参考文献13

  • 1Joshua Zer Levin. Mathematical models for determining the intersections of quadric surfaces [ J ] . Computer Graphics and Image Processing(ll), 1979, 11(1): 73-87.
  • 2Wenping Wang, Jiaye Wang, Myung-Soo Kim. An algebraic condition for the separation of two ellipsoids [ J ] . Computer Aided Geometric Design, 2001, 18(6): 531-539.
  • 3R bhatia. Matrix Analysis [ M], New York: Springer-Verlag,1997.
  • 4Nankai University Editors for Introduction to Analytical Geometry of Three Dimensions. Introduction to Analytical Geometry of Three Dimensions [M], 2nd ed. Beijing: High Education Press, 1989(in Chinese).
  • 5G Strang. Linear Algebra and Its Applications [ M], 3rd ed,San Diego, CA : Harcourt brace Jovanovich, 1988.
  • 6Josef Hoschek, Dieter Laseer. Fundamentals of Computer Aided Geometric Design [M], Massachusetts: A K Peters Wellesley,1993. 505- 547.
  • 7ART R C. An approach to the two dimensional irregular cutting stock problem [A]. IBM Cambridge Scientific Center Report 36-Y08 [R].Cambridge: IBM Cambridge Scientific Center,1966.
  • 8ADAMOWICZ M, ALBANO A. Nesting two dimensional shapes in rectangular modules [J].Comput Aided Des, 1976, 8(1): 27-33.
  • 9CUNNINGHAME-GREEN R. Geometry shoemaking and the milk tray problem [J]. New Scientist, 1989,123(1667): 50-53.
  • 10GHOSH P K. A unified computational framework for Minkowski operation [J]. Comput and Graphics, 1993, 17(4): 357-378.

共引文献16

同被引文献21

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部