期刊文献+

拟南芥AKIN11基因的过表达及其功能分析

Over-expression and function analysis of AKIN11 gene in Arabidopsis
下载PDF
导出
摘要 将蔗糖非发酵基因相关蛋白激酶AKIN11克隆到植物表达载体pEGAD的35S启动子下游与GFP融合,基因枪法导入洋葱表皮细胞进行瞬时表达,发现集中在细胞核内表达.农杆菌介导花序浸泡法转化拟南芥,Basta筛选和RT-PCR鉴定得到两个遗传稳定的T3代转基因株系.突变体和野生型的表型没有明显差异,但突变体叶片中淀粉含量较野生型增加.RT-PCR分析淀粉合成途径关键酶的mRNA水平,发现突变体中腺苷二磷酸葡萄糖焦磷酸化酶表达量增加,而α-淀粉酶却没有变化.表明AKIN11基因可能在拟南芥淀粉积累途径中起着重要的调节作用. The sucrose nonfermenting-1-related protein kinase (SnRK1) AKIN11 was inserted the downstream of the 35S promoter in the plant expression vector pEGAD and then was transformed to Onion Epidermal cell by the particle bombardment. We found that the green fluorescent was focused on the nucleus. The recombination vector was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens through the floral dip method. The two independent homozygous transgenic lines and T3 progenies were obtained by the Basta screening and RT-PCR method. Mutants have no distinguishable phenotype from that of the wild type. However, the starch content shows an increase in leaves of transgenic lines. RT-PCR analyses find that the AKIN11 gene affects the expression of the AGPase, which is a key enzyme in the pathway of the starch synthesis. In contrast, there are no changes in expression of the AMY3. The results indicate that the AKIN11 gene may play an important role in the regulation of pathway of the starch accumulation in Arabidopsis thaliana.
出处 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期145-149,共5页 Journal of Hunan Agricultural University(Natural Sciences)
基金 国家自然科学基金项目(30600368) 湖南省自然科学基金项目(05JJ30038)
关键词 拟南芥 蔗糖非发酵基因相关蛋白激酶 腺苷二磷酸葡萄糖焦磷酸化酶 Α-淀粉酶 Arabidopsis SnRK1 ADP-glucosepyrophosphorylase α-amylase
  • 相关文献

参考文献17

  • 1Alderson A,Sabelli P A,Dickinson J R,et al.Complementation of snf1,a mutation affecting global regulation of carbon metabolism in yeast,by a plant protein kinase cDNA[J].Proc Natl Acad Sci USA,1991,88:8602-8605.
  • 2Halford N G,Hardie D G.SNF1-related protein kinases:global regulators of carbon metabolism in plants[J].Plant Molecular Biology,1998,37:735-748.
  • 3Sugden C,Donaghy P G,Halford N G,et al.Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzymeA reductase,nitrate reductase,and sucrose phosphate synthase in vitro[J].Plant Physiology,1999,120:257-274.
  • 4Halford N G,Hey S,Jhurreea D,et al.Metabolic signalling and carbon partitioning:role of Snf1-related (SnRK1) protein kinase[J].Journal of Experimental Botany,2003,54:382-391.
  • 5Bhalerao R P,Salchert K,Bako L,et al.Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases[J].Proc Natl Acad Sci USA,1999,96:5322-5327.
  • 6Zeeman S C,Tiessen A,Pilling E.Starch synthesis in Arabidopsis granule synthesis,composition,and structure[J].Plant Physiology,2002,129:516-529.
  • 7Hendriks J H,Kolbe A,Gibon Y,et al.ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species[J].Plant Physiology,2003,133:1-12.
  • 8成善汉,柳俊,谢从华.马铃薯腺苷二磷酸葡萄糖焦磷酸化酶研究进展[J].中国马铃薯,2001,15(6):349-354. 被引量:6
  • 9Zeeman S C,Northrop F,Smith A M,et al.A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme[J].Plant Journal,1998,15:357-365.
  • 10Beck E,Ziegler P.Biosynthesis and degradation of starch in higher plants[J].Plant Molecular Biology,1989,40:95-117.

二级参考文献45

  • 1DeRisi J, Lyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997,278,680-686.
  • 2Jackson SD. Multiple signaling pathways control tuber induction in potato.Plant Physiol 1999, 119, 1-8.
  • 3Sweetlove LJ, Muller-Rober B, Willmitzer L, et al. The contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers. Planta 1999, 209, 330-337.
  • 4Müller-R?eber B, Kossmann J, Hannag LC, et al. One of two different ADP- glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Get 1990, 224, 136-146.
  • 5Müller-R?eber B, Sonnewald U, Willmitzer L. Inhibition of AGPase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation andexpression of tuber-storage protein genes. EMBO J 1992, 11, 1229-1238.
  • 6Okita TW, Nakata PA, Anderson JM, et al. The subunit structure of potato tuber ADP-glucose pyrophosphorylase. Plant Physiol 1990, 93 ,785-790.
  • 7Nakata PA, Okita TW. Differential regulation of ADP-glucose pyrophosphorylase in the sink and source tissues of potato. Plant physiol 1995, 108, 361-368.
  • 8Smith AM, Denyer K and Martin C. The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 1997, 48, 67-87.
  • 9Ballicora MA, Laughlin MJ, Fu YB, et al. Adenosine 5'-diphospate-glucose pyrophosphorylase from potato tuber. Plant Physiol 1995, 109, 245- 253.
  • 10Fu Y, Ballicora MA, Leykam JF, Preiss J. Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biolchem 1998, 273, 25045- 25052.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部