期刊文献+

基于小波和匹配跟踪两种降噪方法的比较研究

Comparison Study of Two De-noising Techniques Based on Wavelet Analysis and Matching Pursuit Approaches
下载PDF
导出
摘要 对基于小波和匹配跟踪的两种降噪方法进行了比较研究,利用Matlab软件对几种典型的噪声信号使用以上两种方法进行了降噪处理,并结合处理结果对这两种降噪方法进行了分析比较。结果表明两种方法各有所长,分别适合不同类型信号的降噪处理。另外,还做了一些关于数据处理的工程应用方面的工作。 A comparison study of two de-noising methods based on the wavelet analysis and the matching pursuit approaches was performed. Using the Matlab software, a set of typical noise signals in engineering applications were used to de-noise and to be compared. The comparison results suggested that the two de-noising techniques under consideration can be adopted in processing different types of signals and each having its own advantages. And also, some useful conclusions were drawn, which will benefit the signal processing engineering.
出处 《辽宁工学院学报》 2007年第2期117-120,共4页 Journal of Liaoning Institute of Technology(Natural Science Edition)
关键词 小波分析 匹配跟踪 降噪 wavelet analysis matching pursuit approach de-noising
  • 相关文献

参考文献8

  • 1D L Donoho.De-Noising by Soft-Thresholding[J].IEEE Transactions on Information Theory.1995,41(3):613-627.
  • 2何焰兰,苏勇,高永楣.一种自适应小波去噪算法[J].电子学报,2000,28(10):138-140. 被引量:12
  • 3Albert Boggess,Francis J.Narcowich,小波与傅里叶分析基础[M].芮国胜,康健译.北京:电子工业出版社,2004.
  • 4Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans On Signal Processing,1993,41(12):3397-3415.
  • 5傅霆,尧德中.稀疏分解的加权迭代方法及其初步应用[J].电子学报,2004,32(4):567-570. 被引量:27
  • 6Arthur P L,Philipos C L.Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition[A].Proc.Of IEEE ICASSP[C].Hong Kong.2003,Ⅰ:820-828.
  • 7Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans On Signal Processing,1993,41(12):114-125.
  • 8刘利雄,贾云得,廖斌,张敏.一种改进的最佳时频原子搜索策略[J].中国图象图形学报(A辑),2004,9(7):873-877. 被引量:8

二级参考文献18

  • 1中山大学数学力学系,概率论及数量统计
  • 2B A Olshausen,D J Field.Sparse coding with an overcomplete basis set:a strategy employed by V1[J]? Vision Research,1997,37:3311-3325.
  • 3M Lewicki,T Sejnowksi.Learning overcomplete representations[J].Neural.Computation,2000,12:337-365.
  • 4Chen S S,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM J.Sci Comp,1999,20(1):33-61.
  • 5Michael Zibulevsky,Barak A Pearlmutter.Blind source separation by sparse decomposition in a signal dictionary[J].Neural Computation,2001,13:863-882.
  • 6Michael Zibulevsky,Yehoshua Y Zeevi.Extraction of a Source from Multichannel Data Using Sparse Decomposition[R].Available online at:HYPERLINK ''http://ie.technion.ac.il/-mcib'' http://ie.technion.ac.il/-mcib
  • 7Huo Xiao-ming.Sparse Image Representation via Combined Transforms[D].PH.D Paper of Stanford univ.1999 Available online at: HYPERLINK ''http://www.isye.gatech.edu/-xiaoming'' http://www.isye.gatech.edu/-xiaoming.
  • 8Stephance Mallat.Sihgularity dection and processing with wavelets[J].IEEE trans on information theory,1992,38:617-643.
  • 9R R Gharieb,Andrzej Cichocki,et al.Noise reduction in brain evoked potentials based on third-order correlations[J].IEEE trans on Biomedical Engineering,2001,48:501-512.
  • 10Donoho D L.Sparse Components of Images and Optimal Atomic Decompositions[R].1998.Available online at: HYPERLINK ''http://www-stat.stanford'' http://www-stat.stanford.edu/-donoho/Reports/

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部