期刊文献+

On the Exponential Diophantine Equation x^2 + (3a^2 -1)~m = (4a^2 -1)~n 被引量:1

关于指数丢番图方程x^2+(3a^2-1)~m=(4a^2-1)~n(英文)
下载PDF
导出
摘要 We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3a^2-1)^m = (4a^2-1)^n when 3a^2-1 is a prime or a prime power. 应用Bilu,Hanrot和Voutier关于本原素因子的深刻结果以及二次丢番图方程解的表示的一些精细结果,完全解决了指数型丢番图方程x2+(3a2-1)m=(4a2-1)n当3a2-1是奇素数或奇素数幂时的求解问题.
作者 胡永忠
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第2期236-240,共5页 数学研究与评论(英文版)
基金 the Natural Science Foundation of Guangdong Province (04009801) the Important Science Research Foundation of Foshan University.
关键词 exponential Diophantine equations Lucas sequences primitive divisors Kronecker symbol. 指数丢番图方程 Lucas序列 本原素因子 Kronecker符号
  • 相关文献

参考文献13

  • 1BILU Y,HANROT G,VOUTIER P M.Existence of primitive divisors of Lucas and Lehmer numbers[J].J.Reine Angew.Math.,2001,539:75-122.
  • 2BUGEAUD Y.On some exponential Diophantine equations[J].Monatsh.Math.,2001,132(2):93-97.
  • 3BUGEAUD Y,SHOREY T N.On the number of solutions of the generalized Ramanujan-Nagell equation[J].J.Reine Angew.Math.,2001,539:55-74.
  • 4LEHMER D H.An extended theory of Lucas' functions[J].Ann.Math.,1930,31:419-448.
  • 5LE Mao-hua.The diophantine equation x^2 + D^m = p^n[J].Acta Arith.,1989,52:255-265.
  • 6LJUNGGREN W.On the diophantine equation Cx^2 + D = 2y^n[J].Math.Scand,1966,18:69-86.
  • 7MIGNOTTE M.On the Diophantine equation D1x^2 +D^2m = 4y^n[J].Portugal.Math.,1997,54(4):457-460.
  • 8MORDELL L J.Diophantine Equations[M].Academic Press,London-New York,1969.
  • 9YUAN Ping-zhi,HU Yong-zhong.On the Diophantine equation x^2 + D^m = p^n[J].J.Number Theory,2005,111(1):144-153.
  • 10HU Yong-zhong,LIU Rong-xuan.On the solutions of the exponential Diophantine equation x^2 + (3a^2 + 1)^m =(4a^2 + 1)^n[J].Sichuan Daxue Xuebao,2006,43(1):41-46.

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部