期刊文献+

一类强耦合互惠模型的共存解 被引量:1

Coexistence of a Strongly Coupled System Describing a Mutualistic Model
下载PDF
导出
摘要 研究了两种群互惠模型。利用耦合上下解及相应的单调序列方法研究了带Direchlet边界条件互惠模型强耦合问题共存解,结果说明,当交错扩散和种间作用相对弱时,强耦合问题就至少存在一个解。 In this paper,the cooperating two-species Lotka-Vorterra model is discussed. The authors study the existence of solutions to a strongly coupled elliptic system with homogeneous of Dirchlet boundary conditions by the method of coupled upper and lower solutions and its associated monotone iterations. Their results shows that this model admits at least one coexistence state if cross-diffusions are weak.
作者 黄优良 张来
出处 《吉林师范大学学报(自然科学版)》 2007年第1期42-44,86,共4页 Journal of Jilin Normal University:Natural Science Edition
关键词 反应扩散系统 强耦合 共存解 Reaction diffusion system Strongly coupled Coexistence
  • 相关文献

参考文献8

  • 1Shigesada N.,Kawasaki K.and Teramoto E..Spatial segregation of interacting species[J] J.Theo.Biology 79(1979),83~99.
  • 2M.Mimura.Stationary pattern of some desity-dependent diffusion system with competitive dynamics[J],Hiroshima Math..11 (1981)621~635.
  • 3Lou Y.,Ni W.M.Diffusion.self-diffusion and cross-diffusion[J],J.Diff.Equ.,131(1996),79~131.
  • 4Ahn I.,Li L.Positive solutions of certain elliptic systems with density dependent diffusions[J],Proc.Roy.Soc.Edinburgh Sect.A,125(1995),1031~1050.
  • 5Kim K.I.,Lin A.G.Coexsistence of three species in a strongly coupled elliptic systemfj],Nonlinear Anal,55(2003),313~333.
  • 6Chen B.,Peng P.Coexistence states of a strongly coupled prey-predator mode[J],J.Partial differential Equations,18(2005),154~166.
  • 7Pao C.V.Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion[J],Nonlinear Anal,60(2005),1197~1217.
  • 8Wang shunqing.Wang Wanxiong.Xu Haigen.Theory and Methods of Stability in Mathematic ecology[M],Science Press,Beijing,2004.

同被引文献9

  • 1SCHIGESADA N, KAWASAKI K, TERAMOTO E. Spatial segregation of interacting species [J]. J Theor Biol, 1979, 79(1): 83-99.
  • 2RUAN Weihua. Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffu- sion coefficients [J]. J Math Anal Appl, 1996, 197(2): 558 -578.
  • 3MIMURA M, KAWASAKIA K. Spatial segregation in competitive interaction-diffusion equations [J]. J Math Boilogy, 1980, 9(1): 49 -64.
  • 4RYU K, AHN I. Coexistence theorem of steady states for nonlinear self-cross diffusion system with competitive dynamics [J]. J Math AnalAppl, 2003, 283(1): 46-65.
  • 5GAN Wenzhen, LIN Zhigui. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model [J]. J Math AnalAppl, 2008, 337(2): 1089-1099.
  • 6CHEN Xinfu, QI Yuanwei, WANG Mingxin. A strongly coupled predator-prey system with non-monotonic functional response [J]. Nonlinear Anal: Theor Meth Appl, 2007, 67(6) : 1966-1979.
  • 7ZHU Peng, GAN Wenzhen, LIN Zhigui. Coexistence of two species in a strongly coupled Schoener's competi- tive model[J]. J Math AnalAppl, 2010, 110(1): 469-476.
  • 8PAO C V. Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion [J]. Nonlinear Anal: Theor Meth Appl, 2005, 60(7): 1197-1217.
  • 9刘勇,许飞,田灿荣,林支桂.具有扩散的二种群捕食-被捕食模型中的共存解[J].扬州大学学报(自然科学版),2004,7(1):5-8. 被引量:8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部