期刊文献+

广义非线性Sine-Gordon方程的两个隐式差分格式 被引量:7

Two Implicit Difference Schemes for the Generalized Nonlinear Sine-Gordon Equation
原文传递
导出
摘要 本文对一类非线性Sine-Gordon方程的初边值问题提出了两个隐式差分格式.两个隐式差分格式的精度均为O(τ~2+h^2).我们用离散泛函分析的方法证明了格式的收敛性和稳定性,并证明了求解格式的追赶迭代法的收敛性,最后给出了数值结果.结果表明本文的格式是有效的和可靠的. In this paper, a implicit scheme and a compact scheme for the solution of an initial-boundary value problem of the generalized nonlinear Sine-Gordon Equation are presented. The trunction error of the two schemes is O(τ^2+h2).The convergence and stability are obtained by the discrete functions analysis method. At last, we give the numerical results of the two schemes. The numerical experments demonstrate that our algorithms are effective and reliable.
出处 《应用数学学报》 CSCD 北大核心 2007年第2期263-271,共9页 Acta Mathematicae Applicatae Sinica
关键词 广义Sine-Gordon方程 差分格式 收敛性 稳定性 Sine-Gordon Equation difference scheme convergence stability
  • 相关文献

参考文献8

  • 1Zhu Zhiwei,Lu Yong.The Existence and Uniqueness of Solution for a Generalized Sine-Gordon Equation.Chinese Quarterly Journal of Mathematics,2000,15:71-77
  • 2周盛凡.有阻尼Sine-Gordon方程的全局吸引子的维数[J].数学学报(中文版),1996,39(5):597-601. 被引量:15
  • 3Ya Shu Wong,Qianshun Chang,Lianger Gong.An Initial-boundary Value Problem of a Nonlinear Klein-Gordon Equation.Applied Mathematics and Computation,19997,84:77-93
  • 4Guo Benyu.Numerical Solution of the Sine-Gordon Equation.Applied Mathematics and Computation,1986,18:1-14
  • 5Zhang Fei,Luis Vazquez.Two Energy Conserving Numberical Schemes for the Sine-Gordon Equation.Applied Mathematics and Computation.1991.45:17-30
  • 6Roger Temam.Infinite-dimensional Dynamical System in Mechanicas and Physics.Appl.Math.Sci.Vol.68,New York,1988
  • 7葛永斌,田振夫,吴文权.三维抛物型方程的两种加权平均隐式多重网格方法[J].工程数学学报,2003,20(3):105-110. 被引量:17
  • 8Zhou Yulin,Applications of Discrete Functional Analysis to the Finite Difference Method.International Academic Publishers,1990

二级参考文献11

  • 1葛永斌,吴文权,卢曦.解二维扩散方程的高精度多重网格方法[J].工程热物理学报,2002,23(S1):121-124. 被引量:6
  • 2哈克布思W 林群(译).多重网格方法[M].北京:科学出版社,1988..
  • 3Peaceman D W, Rachford H H. The numerical solution of parabolic and elliptic differential equations[J]. J Soc Indnst Appl Math, 1955 ; 3 : 28 - 41.
  • 4Brandt A. Mu]ti-Level adaptive solution to boundary-value problems[J]. Math Comput, 1977 ;31:333- 390.
  • 5Gupta M M et al . Comparison of second-and fourth-order discretizations for multigrid poisson solvers[J]. J Comput Phys, 1997 ; 132 : 226 - 232.
  • 6Zhang J. Fast and high accuracy multlgrid solution of the three dimensional poisson equation[J]. J Comput Phys,1998; 143 :449 - 461.
  • 7Hirsh R S. Higher order accurate difference solutions of fluid mechanics problem by a compact differencing technique[J]. J Comput Phys, 1975 ; 19:90 - 109.
  • 8Wesseling P W. An introduction to multigrid methods[ M]. Pure and Appl Math, Chichester: Wiley, 1992.
  • 9马明书.解三维抛物型方程的一个新的高精度显格式[J].应用数学和力学,1998,19(5):465-469. 被引量:7
  • 10曾文平.三维热传导方程的一族两层显式格式[J].应用数学和力学,2000,21(9):966-972. 被引量:13

共引文献30

同被引文献55

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部