期刊文献+

一类种群动力学模型正概周期解的存在性 被引量:1

Existence of Positive Almost Periodic Solution for a Class of Population Differential Equation with Infinite Delay
原文传递
导出
摘要 本文讨论了一类时滞微分方程正概周期解的存在性问题,利用锥中u_0-凹算子与增算子的性质,不仅得到了上述系统的正概周期解的存在性与非存在性的结论,还改进了现有的结果,并且我们的方法也适用于更一般的系统. In this paper, a class of population differential equation with infinite delay as follows N'(t)=-γ(t)N(t)+α(t)∫0^∞k(s)N(t-s)e^-β(t)N(t-s)ds,t≥0 is disscussed. Sufficient conditions for the existence of positive almost periodic solutions are obtained by using u0-concave operator and increasing operator. Our results are new and some existing statements are improved.
作者 王晓 李志祥
出处 《应用数学学报》 CSCD 北大核心 2007年第2期272-278,共7页 Acta Mathematicae Applicatae Sinica
关键词 正概周期解 时滞 u0-凹算子 positive almost periodic solution delay u0-concave operator cone
  • 相关文献

参考文献1

二级参考文献1

共引文献5

同被引文献9

  • 1崔景安.具有扩散和时滞的捕食系统的持续生存[J].数学学报(中文版),2005,48(3):479-488. 被引量:5
  • 2王育全,刘来福.具有Monod-Haldane功能反应的一类食物链模型的动力学行为[J].数学物理学报(A辑),2007,27(1):79-89. 被引量:7
  • 3Meng X Z,Chen L S,Wang X L. Some new results for a logistic almost periodic system with infinite delay and discrete delay[J]. Nonlinear Anal. RWA, 2009,10 : 1255-1264.
  • 4Meng X Z,Chen L S. Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay[J]. J. Math. Anal. Appl. , 2008,339:125-145.
  • 5Wang Y Q. Global stability and Hopf bifurcation on a predator-prey system with diffusion and delays[J]. Rocky Mountain J. Math. ,2008,38(5) :1685-1703.
  • 6Yang W S, Li X P, Bai Z J. Permanence of periodic Holling type-Ⅳ predator-prey system with stage structure for prey[J]. Math. Comput. Modelling,2008,48:677-684.
  • 7Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamies[M]. Dordreeht/Norwell: Kluwer Academic, 1992.
  • 8Li H X. Almost periodic solutions for logistic equations with infinite delay[J]. Appl. Math. Letters, 2008, 21 :113-118.
  • 9冯春华,葛渭高.一类种群动力学模型的概周期解[J].应用数学学报,2003,26(3):402-407. 被引量:6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部