摘要
本文讨论了一类时滞微分方程正概周期解的存在性问题,利用锥中u_0-凹算子与增算子的性质,不仅得到了上述系统的正概周期解的存在性与非存在性的结论,还改进了现有的结果,并且我们的方法也适用于更一般的系统.
In this paper, a class of population differential equation with infinite delay as follows N'(t)=-γ(t)N(t)+α(t)∫0^∞k(s)N(t-s)e^-β(t)N(t-s)ds,t≥0 is disscussed. Sufficient conditions for the existence of positive almost periodic solutions are obtained by using u0-concave operator and increasing operator. Our results are new and some existing statements are improved.
出处
《应用数学学报》
CSCD
北大核心
2007年第2期272-278,共7页
Acta Mathematicae Applicatae Sinica
关键词
正概周期解
时滞
u0-凹算子
锥
positive almost periodic solution
delay
u0-concave operator
cone