摘要
结合电镦机中加热电流的数学模型,详细分析了综合集成神经网络算法的实现过程,其仿真结果表明,它在“小样本”时,不仅能减少连接权值,而且能加快训练速度,提高泛化能力,实现了电镦机中的关键参数——加热电流的高精度预报。
Based on the mathematic model of heating current in the electric upsetting, the paper analyses the algorithmic implementation of synthetic neural network in detail, the results of the simulink could be shown that a synthetic method of neural network can reduce the number of network weight, improve the learning speed, generalization performance of the network in the lack of learning sample, as well as realize a high precision prediction of the heating current ,which is the key parameter in the electric upsetting.
出处
《计算机应用与软件》
CSCD
北大核心
2007年第5期58-59,62,共3页
Computer Applications and Software
基金
广东省自然科学基金资助项目(990141)。
关键词
算法研究
综合集成神经网络
加热电流
预报
Algorithmic research Synthetic neural network Heating current Prediction