期刊文献+

聚类算法在学分制下高校专业自动分类中的应用 被引量:2

RESEARCH ON CREDIT-SYSTEM-BASED AUTOMATIC SPECIALITY CLASSIFICATION IN COLLEGES AND UNIVERSITIES USING CLUSTERING ALGORITHM
下载PDF
导出
摘要 聚类分析是数据挖掘领域广泛使用的一种技术,可以自动发现隐含在数据集中的分类模式。学分制体系下的学生选课数据可以看作分类属性的数据或布尔型数据。研究表明,使用距离作为测度的传统聚类算法并不适合处理这类数据。在分析数据集特点的基础上,提出了一个新的聚类算法,它用公共近邻点数来衡量两数据间的相似性,这样有利于考虑数据分布的全局特征,具有良好的聚类特性和可扩展性。通过在开发的模型系统上进行实验分析,得到了较好的实验结果,对较好解决学分制体系下学生专业自动分类问题具有积极意义。 Clustering is a widely used technique for discovering categorical patterns in underlying data in data miming. There exist quite a lot of course-selecting data in credit system,which can be viewed as data with categorical attributes or boolean data. Researches show it is inappropriate to process these datawith a traditional clustering algorithm in which distance is used as a measure. Based on the characteristics analysis of data sets, the author puts forwards a new algorithm in which data similarity is measured with common adjacent points, thus global characteristics of data distribution are taken into account, good clustering property and expandability are achieved, and credit-system-based automatic speciality classification is realized. Experimental analysis is carried out on a developed system modelwith good experimental results.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第5期60-62,共3页 Computer Applications and Software
基金 安徽省教育厅自然科学基金项目(2005KJ051)。
关键词 聚类分析 相异度 学分制 分类属性 Clustering analyzing Dissimilarity Credit system Categorical attributes
  • 相关文献

参考文献5

  • 1薛方亮,帅典勋.利用广义细胞自动机实现的智能数据聚类[J].计算机与数字工程,2005,33(6):45-47. 被引量:1
  • 2JainA K,Murty M N,Flynn P J.Data Clustering:A Review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 3Tian Zhang,Raghu Ramakrishnan,Miron Livny.Birch:An efficient data clustering method for very large databases.Proceedings of the ACM International Conference on Management of Data,1996:103-114.
  • 4Martin Ester,Hans,Peter Kriegel,et al.Density-Based Algorithm for D iscovering Clusters in Large Spatial Databases with Noise-Published in Proceedings of 2nd international conference on knowledge discovery and data mining.
  • 5董一鸿.大型数据库中基于邻域连接的层次聚类算法[J].计算机工程与应用,2003,39(32):194-197. 被引量:6

二级参考文献18

  • 1M Ester,H-P Kriegel,J Sander et al.A density-based algorithm for discovering clusters in large spatial databases[C].In:Proc of the ConfKnowledge Discovery and Data Mining(KDD'96), 1996-08.
  • 2M Ankerst,M Breunig,H-P Krlegel et al.OPTICS:Ordering points to identify the clustering structure[C].In :Proc of the ACM-SIGMOD Conf.on Management of Data(SIGMOD'99), 1999-06.
  • 3W Wang,J Yang,R Muntz.STING:A statistical information grid approach to spatial data mining[C].In:Proc 1997 Int Conf Very large Data Bases(VLDB'97), 1997-08.
  • 4Anil K Jain,Richard C Dubes.Algorithms for Clustering Data[M].Englewood Cliffs,New Jersey:Prentice Hall,1955.
  • 5Y Cai,N Cercone,J Han.Attribute-oriented induction in relational databases[C].In : G Piatetsky-Shapiw, W J Frawley eds.Knowledge Discovery in Databases,Cambridge, MA : AAAI/MIT Press, 1991.
  • 6J MacQueen.Some methods for classification and analysis of multivariate observations[C].In:Proc 5th Berkeley Syrup Math Stafist,Prob, 1967; 1:281-297.
  • 7L Kaufman,P J Rousseeuw.Finding Groups in Data:An Introduction to Cluster Analysis[M].New York:John Wiley & Sons,1990.
  • 8R Ng,J Han.Efficient and effective clustering method for spatial data mining[C].In:Proc 1994 Int Conf Very Large Data Bases(VLDB'94), Santiago, Chile, 1994-09.
  • 9T Zhang,R Ramakrishnan,M Livny.BIRCH:An efficient data clustering mothed for very large databases[C].In:proc of the ACM-SIGMOD Conf on Management of Data(SIGMOD'96), 1996-06.
  • 10S Guha,R Rastogi, K Shim.Cure:An efficient clustering algorithm for large databases[C].In:Proc of the ACM-SIGMOD Conf on Management of Data(SIGMOD'98), 1998-05.

共引文献5

同被引文献15

引证文献2

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部