期刊文献+

基于斜对称性的闭合曲线恢复

Completion Recovery of Closed Contours Using Their Skewed Symmetry
下载PDF
导出
摘要 在计算机视觉中,对称性是三维物体的重要几何特征之一,可以利用它来恢复物体的结构、确定三维空间位置.但由于物体之间互相遮挡以及噪声影响,很难获得完整的对称图形.本文基于以前所获得有关闭合曲线的斜对称性质,阐述了以给定的一段曲线,只要找出两条相邻的斜对称轴线,确定其对称度,经线性几何正反变换,就可完整地恢复闭合曲线的算法.使用该算法所进行的实验是令人满意的. in computer vision symmetry is one of important geometric features of 3-D objects. We can use it to recover the structure of objects and estimate their positions in 3-D space. However,it is difficUlt to obtain perfect symmetry shapes due to occlusion,self-occlusion or noise. This paper describes a new algorithm which recovers a whole closed contour from its partial curve ba$ed on the skewed symmetry. First we find two axes of skewed symmetry. Then all skewed symmetry axes of the closed contour are calculated. The closed contour can be obtained through the linear geometric transformation and is inverse transformation. The experimental results implemented with the algorithm are very satisfactory.
出处 《电子学报》 EI CAS CSCD 北大核心 1997年第1期80-84,共5页 Acta Electronica Sinica
基金 国家模式识别实验室科学基金
关键词 斜对称 闭合曲线 对称度 完整性恢复 模式识别 Skewed symmetry, Closed contour, Symmetry degree, Linear geometric transformation, Completion recovery
  • 相关文献

参考文献6

  • 1温巍,袁保宗.闭合曲线的斜对称轴线的检测[J].通信学报,1996,17(2):33-38. 被引量:6
  • 2温巍,Proceedings of 7th European Signal Processing Conference,1994年
  • 3温巍,Proceedings of IEEE Region 10’s Ninth Annual International Conference,1994年
  • 4温巍,Proceedings of the Second Asian Conference on Robotics and its Applications,1994年
  • 5温巍,Proceedings of International Conference on Signal Processing,1993年
  • 6温巍,第九届全国模式识别与人工智能学术会议论文集,1993年

二级参考文献5

  • 1温巍,Proceedings of IEEE region 10’s ninth anunal international conference,1994年
  • 2温巍,Proceedings of the second asian conference on robotics and its applications,1994年
  • 3温巍,Proceedings of VII european signal processing conference,1994年
  • 4温巍,Proceedings of international conference on signal processing,1993年
  • 5温巍,第九届全国模式识别与人工智能学术会议论文集,1993年

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部