摘要
微粒群算法(PSO)是一种随机全局优化技术,算法通过微粒间的相互作用发现复杂搜索空间中的最优区域.但基本微粒群算法不能保证全局收敛,本文将改进的PSO算法(SPSO)应用于PID控制器的参数优化.经仿真证明PSO算法参数优化的有效性.
The particle swarm optimization (PSO) algorithm is a random global optimization technology. Through interaction between particles, the algorithm found the optimal area in complicate searching space. But the standard PSO can't lead to convergence of global optimization. In this paper, the improved PSO algorithm, called stochastic PSO, is used to guarantee converge to the global solution for parameter optimization of PID controller. The simulation showes the effectiveness of PSO algorithm in parameter optimization.
出处
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第1期135-138,共4页
Journal of Donghua University(Natural Science)
关键词
PID控制器
微粒群算法
收敛性
参数优化
PID controller
particle swarm optimization algorithm
converge
parameter optimization