期刊文献+

基于自适应核估计的ICA算法 被引量:3

ICA Algorithm Based on Adaptive Kernel Estimation
下载PDF
导出
摘要 在自然梯度算法的框架下,本文利用随机变量概率密度函数非参数估计的自适应核函数法,给出了一种能够对任意混合信号(超高斯和亚高斯信号,对称和非对称分布信号)进行盲分离的算法。本算法无需选择非线性函数,而是根据信号的统计特性自动地直接估计评价函数。通过仿真实验,验证了本文算法的有效性。 Under the frame of natural gradient algorithm, an ICA algorithm based on adaptive kernel estimation is proposed, which can separate arbitrary mixed signals (such as super-Gaussian and sub-Gaussian, symmetric and asymmetric signals). This algorithm does not need to choose non-linear function artificially, but automatically estimates score function according to the statistic identity of signals. Simulations show that this algorithm can successfully separate mixed signals.
出处 《工程地球物理学报》 2007年第2期90-94,共5页 Chinese Journal of Engineering Geophysics
基金 国家自然科学基金(编号:60672049)资助
关键词 自适应核估计 盲源分离 独立成分分析 adaptive kernel estimation blind source separation(BSS) Independent compo-nent analysis(ICA)
  • 相关文献

参考文献9

  • 1[1]Amari S,Chichocki A,Yang H H.A new learning algorithm for blind dignal separation[C].In Neural Information Processing System,1996:757~763.
  • 2[2]Cardoso J F,Souloumiac A.Blind beam forming for non-Gaussian signals[J].IEE Proc.F,1995,140(6):214~224.
  • 3[3]Comon P.Independent component analysis,A new con-cept?[J].Signal Processing,1994,36 (3):287~314.
  • 4[4]Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1998,9(7):1483~1492.
  • 5[5]Karvanen J,Eriksson J,Koivunen V.Maximum likelyhood estimation of ICA model for wide class of source distributions[C].In Processing of the 2000 IEEE Workshop on Neural Networks for Signal Processing X,Sydney,Australia,2000,445~454.
  • 6[6]Lee T W,Girolami M,Sejnowski T.Independent component analysis using an extend infomax algorithm for mixed sub-Gaussian and super-Gaussian sources[J].Neural Computation,1998,3(1):69~80.
  • 7[7]Silverman B W.Density estimation for statistics and data analysis[M],New York:Chapman & Hall/C-RC,1998.
  • 8张贤达,朱孝龙,保铮.Grading learning for blind source separation[J].Science in China(Series F),2003,46(1):31-44. 被引量:14
  • 9汪太月,李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报,2006,3(3):172-176. 被引量:38

二级参考文献33

  • 1付丽华,李宏伟,张猛.基于小波变换的复杂噪声背景中谐波恢复方法[J].工程地球物理学报,2005,2(1):22-28. 被引量:10
  • 2[1]Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks,1999, 10(3): 626-634.
  • 3[2]Giannakopoulos, V., Comparison of adaptive independent component analysis algorithms, Available at http://www.cis.hut. fi/~xgiannak/.
  • 4[3]Bell, A. J., Sejnowski, T. J., An information-maximization approach to blind separation and blind deconvolution, Neural Computations, 1995, 7:1129-1159.
  • 5[4]Karhunen, J., Joutsensalo, J., Representation and separation of signals using nonlinear PCA type learning, Neural Net works, 1994, 7: 113-127.
  • 6[5]Karhunen, J., Pajunen, P., Oja, E., The nonlinear PCA criterion in blind source separation: Relations with other approaches, Neural Computing, 1998, 22: 5-20.
  • 7[6]Comon, P., Independent component analysis, a new concept? Signal Processing, 1994, 36:287-314.
  • 8[7]Pham, D. T., Blind separation of instantaneous mixtures of sources via an independent component analysis, IEEE Trans. Signal Processing, 1996, 44: 2768-2779.
  • 9[8]Cardoso, J. F., Laheld, B., Equivariant adaptive source separation, IEEE Trans. Signal Processing, 1996, 44: 3017-3030.
  • 10[9]Yang, H. H., Amari, S., Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mu tual information, Neural Computations, 1997, 9:1457-1482.

共引文献50

同被引文献26

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部