摘要
在自然梯度算法的框架下,本文利用随机变量概率密度函数非参数估计的自适应核函数法,给出了一种能够对任意混合信号(超高斯和亚高斯信号,对称和非对称分布信号)进行盲分离的算法。本算法无需选择非线性函数,而是根据信号的统计特性自动地直接估计评价函数。通过仿真实验,验证了本文算法的有效性。
Under the frame of natural gradient algorithm, an ICA algorithm based on adaptive kernel estimation is proposed, which can separate arbitrary mixed signals (such as super-Gaussian and sub-Gaussian, symmetric and asymmetric signals). This algorithm does not need to choose non-linear function artificially, but automatically estimates score function according to the statistic identity of signals. Simulations show that this algorithm can successfully separate mixed signals.
出处
《工程地球物理学报》
2007年第2期90-94,共5页
Chinese Journal of Engineering Geophysics
基金
国家自然科学基金(编号:60672049)资助
关键词
自适应核估计
盲源分离
独立成分分析
adaptive kernel estimation
blind source separation(BSS)
Independent compo-nent analysis(ICA)