期刊文献+

支路数对热泵空调中冷凝和蒸发两用换热器性能的影响 被引量:27

Effect of Circuit Number on the Indoor Coil Serving as Both Condenser and Evaporator in Heat Pump
下载PDF
导出
摘要 在空气的进口状态和流量、换热器的几何结构尺寸、管路排布方式等相同时,研究了支路数对蒸发和冷凝两用换热器流动与传热性能的影响规律.结果表明:随支路数增多,空气与制冷剂间的传热温差会增大,但总传热系数却会变小;室内换热器作蒸发器时,换热量先升后降,最小值比最大值小23.2%,存在使换热量最大的最佳支路数,在支路数小于或大于最佳支路数时,换热量的主导因素分别为传热温差与总传热系数;室内换热器作冷凝器时,换热量随支路数增多单调递减,最小值比最大值小40.55%,总传热系数始终是制约换热量的主导因素.因此,为协调并同时提高制冷、制热循环的效率,需要优化热泵系统中换热器的支路数. The effect of the circuit number on the indoor coil in a split-type air-source heat pump is investigated numerically by EVAP-COND 2. 0 version simulation package of American NIST. The indoor coil serves as an evaporator in a cooling cycle and as a condenser in a heating cycle. The simulation demonstrates that the air-and-refrigerant temperature difference increases with the circuit number, but the overall heat transfer coefficient drops. The evaporator capacity rises firstly, and then drops with the circuit number and achieves the maximum in the optimum circuit number. The minimum evaporator capacity gets less than the maximum by 23. 2%. The air-and-refrigerant temperature difference and the overall heat transfer coefficient become the dominant factor governing the evaporator capacity, respectively behind and beyond the optimum circuit number. The condenser capacity always decreases with the circuit number and the overall heat transfer coefficient acts as the dominant factor. The minimum condenser capacity is less than the maximum by 40.5 %. These results demonstrate that the indoor coil in a heat pump is endowed with an optimal circuit number to heighten the efficiencies and capacity in heating and cooling cycles simultaneously.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第5期543-548,共6页 Journal of Xi'an Jiaotong University
关键词 支路数 冷凝器 蒸发器 热泵 热泵空调 circuitry number condenser evaporator heat pump
  • 相关文献

参考文献15

  • 1Domanski P A,Yashar D,Kim M S.Performance of a finned-tube evaporator optimized for different refrigerants and its effect on system efficiency[J].International Journal of Refrigeration,2005,28 (6):820-827.
  • 2Liang S Y,Wong T N,Nathan G K.Numerical and experimental studies of refrigerant circuitry of evaporator coils[J].International Journal of Refrigeration,2001,24 (8):823-833.
  • 3Liang S Y,Wong T N,Nathan G K.Study on refrigerant circuitry of condenser coils with exergy destruction analysis[J].Applied Thermal Engineering,2000,20 (6):559-577.
  • 4Liu M S,Leu J S.Influence of circuitry arrangement on the pressure drops of two-row finned tube evaporators[J].ASME Journal of Energy Resources Technology,2001,123(1):100-103.
  • 5Wang Chi Chuan,Jang J Y,Lai C C,et al.Effect of circuit arrangement on the performance of air-cooled condensers[J].International Journal of Refrigeration,1999,22 (4):275-282.
  • 6Domanski P A.Simulation models for finned-tube evaporator and condenser-EVAP-COND 2.1[CP/ OL].Gaithersburg,USA:National Institute of Standards and Technology[2006-08-12].http://www2.bfrl.hist.gov/software/evap-cond/.
  • 7Domanski P A.Simulation of an evaporator with nonuniform one-dimensional air distribution[J].ASHRAE Transaction,1991,97 (1):793-802.
  • 8Domanski P A.Finned-tube evaporator model with a visual interface[C] // 20th International Congress of Refrigeration.Sydney,Australia:International Institute of Refrigeration,1999:1-7.
  • 9Wang Chi Chuan,Chi Kuan Yu,Chang Chun Jung.Heat transfer and friction characteristics of plain finand-tube heat exchangers,part Ⅱ:correlation[J].International Journal of Heat Mass Transfer,2000,43(15):2693-2700.
  • 10Thome J R.Update on advances in flow pattern based two-phase heat transfer models[J].Experimental Thermal and Fluid Science,2005,29(3):341-349.

同被引文献196

引证文献27

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部