期刊文献+

基于Hamaker假设的黏着接触弹性模型 被引量:1

Elastic Model of Adhesive Contact Based on Hamaker Hypotheses
下载PDF
导出
摘要 为研究微纳米系统中的黏着接触问题,基于Hamaker假设和Lennard-Jones的势能定律,通过积分方法得到了球体与平面间的黏着力,同时结合经典弹性理论建立了一种新型的球体与平面黏着接触的弹性模型.该模型可以同时得到平面轮廓随间距的变形过程及黏着力和平面变形量随间距的变化规律,当球体半径较大时,所建模型与基于Derjaguin近似的黏着模型给出的结果基本一致,随着球体半径的逐渐减小,2种模型的差异逐渐增大,这是由于Derjaguin近似的误差随球体半径的减小而增大引起的.因此,当球体的半径趋近纳米级时,基于Hamaker假设的黏着接触模型消除了Derjaguin近似所带来的误差,可以更加准确地给出黏着力和平面变形量随间距的变化规律. Based on Hamaker hypotheses and Lennard-Jones potential, the adhesive force between a sphere and a plane is revealed with an integral method. Simultaneously, a novel model of adhesive contact between a rigid sphere and an elastic plane is established to investigate the adhesion problems in micro- and nano-systems, which is capable of obtaining the variations with the distance of the adhesive force, the deformation and the contour of the plane. For a large sphere, the results from the proposed model are coincident with that from the model based on the Derjaguin approximation. For a nano-scale sphere, the discrepancies appear between the two models due to the increased the error of the Derjaguin approximation with decreasing spheres. So for a nano- scale sphere, the proposed model enables to lead more accurate solutions.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第5期606-610,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金(10476019)
关键词 黏着接触 弹性模型 Hamaker假设 微纳米系统 adhesive contact elastic model Hamaker hypotheses micro/nano-system
  • 相关文献

参考文献16

  • 1Boer M P,Michalske T A.Accurate method for determining adhesion of cantilever beams[J].Journal of Applied Physics,1999,86(2):817-827.
  • 2Johnson K L,Kendall K,Roberts A D.Surface energy and the contact of elastic solids[J].Proceedings of the Royal Society of London,1971,324(1):301-313.
  • 3Derjaguin B V,Muller V M,Toprov Y P.Effect of contact deformation on the adhesion of particles[J].Journal of Colloid and Interface Science,1975,53 (2):314-326.
  • 4Bradley R S.The cohesive force between solid surfaces and the surface energy of solids[J].Philosophical Magazine,1932,13:853-862.
  • 5Tabor D.Surface forces and surface interactions[J].Journal of Colloid and Interface Science,1977,58 (1):2-13.
  • 6Maugis D.Adhesion of sphere:the JKR-DMT transition using a Dugdale model[J].Journal of Colloid and Interface Science,1992,150(1):243-269.
  • 7Muller V M,Yushchenko V S,Derjaguin B V.On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane[J].Journal of Colloid and Interface Science,1980,77(1):91-101.
  • 8Attard P,Paker J L.Deformation and adhesion of elastic bodies in contact[J].Physical Review:A,1992,46(12):7959-7971.
  • 9Feng J Q.Contact behavior of spherical elastic particles:a computational study of particle adhesion and deformations[J].Colloid and Surfaces A:2000,172(3):175-198.
  • 10樊康旗,贾建援.微机械黏着接触问题的建模和分析[J].西安交通大学学报,2006,40(11):1280-1284. 被引量:5

二级参考文献13

  • 1Landman U,Luedtke W D,Nancy A B.Atomistic mechanisms and dynamics of adhesion nanoidentation and fracture[J].Science,1990,248(4978):454-461.
  • 2Johnson,K L.Contact mechanics[M].Cambridge:Cambridge University Press,1985:11-80.
  • 3Johnson K L,Kendall K,Roberts A D.Surface energy and the contact of elastic solids[J].Proceedings of the Royal Society of London (A),1971,324(1558):301-313.
  • 4Derjaguin B V,Muller V M,Toprov Yu.Effect of contact deformation on the adhesion of particles[J].Journal of Colloid and Interface Science,1975,53 (2):314-326.
  • 5Bradley R S.The cohesive force between soild surfaces and the surface energy of solids[J].Philosophical Magazine,1932,13:853-862.
  • 6Tabor D.Surface forces and surface interactions[J].Journal of Colloid and Interface Science,1977,58 (1):2-13.
  • 7Muller V M,Yushchenko V S,Derjaguin B V.On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane[J].Journal of Colloid and Interface Science,1980,77(1):91-101.
  • 8Maugis D.Adhesion of sphere:the JKR-DMT transition using a Dugdale model[J].Journal of Colloid and Interface Science,1992,150(1):243-269.
  • 9James Q.Contact behavior of spherical elastic particles:a computational study of particle adhesion and deformations[J].Colloid and Surfaces (A),2000,172(3):175-198.
  • 10赵亚溥,王立森,孙克豪.Tabor数、粘着数与微尺度粘着弹性接触理论[J].力学进展,2000,30(4):529-537. 被引量:28

共引文献4

同被引文献19

  • 1FENG J Q, Adhesive contact of elastically deformable spheres: a computational study of pull-off force and contact radius [J]. Journal of Colloid and Interface Science, 2001, 238(2): 318-328.
  • 2MAUGIS D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model [ J]. Journal of Colloid and Interface Science, 1992, 150(1): 243-269.
  • 3HARIRI A, ZU J W, MRAD R B. Modeling of dry stiction in micro electro-mechanical systems[J]. Jour- nal of Micromechanics and Microengineering, 2006, 16 (7) : 1195-1206.
  • 4BRADLEY R S. The cohesive force between solid sur- faces and the surface energy of solids [J]. Philosophi- cal Magazine, 1932, 13(86): 853-862.
  • 5GREENWOOD J A. Adhesion of elastic spheres [J]. Proceedings of the Royal Society of London: A, 1997, 453(9) : 1277-1297.
  • 6HAMAKER H C. The London-van der Waals attrac- tion between spherical particles [J]. Physica, 1937, 4 (10) : 1058-1072.
  • 7LUAN B, ROBBINS M O. Contact of single asperity with varying adhesion: comparing continuum mechan- ics to atomistic simulations [J]. Physical Review: E, 2006, 74(2) : 026111.1-026111.17.
  • 8LUAN B Q, ROBBINS M O. The breakdown of con- tinuum models for mechanical contacts [J]. Nature, 2005, 435(24): 929-932.
  • 9MULLER V M, YUSHCHENKO V S, DERJAGUIN B V. On the influence of molecular force on the de- formation of an elastic sphere and its sticking to a plane [J]. Journal of Colloid and Interface Science, 1980, 77(1): 91-101.
  • 10YU N, POLYCARPOU A A. Adhesive contact based on the Lennard-Jones potential., a correction to the val- ue of the equilibrium distance [J]. Journal of Colloid and Interface Science, 2004, 278(2): 428-435.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部