摘要
得到了变系数的n阶中立型时滞微分方程(d^n)/(d^(t^n))[x(t)+p(t)x(t-τ)]+sum from t=1 to m Q_i(t)x(t-σ_i)=0当n为偶数时解振动的充分性判据,推广了文献[1—3]中的有关结果.
We obtain some sufficient conditions when "n" is an even number of the oscillations of all solutions for the class high-order neutral delay differential equations with variant coefficient d^n/dt^n[x(t)+p(t)x(t-τ)]+∑i=1^mQi(t)x(t-σi)=0 These results further improve some corresponding in document [1--3].
出处
《德州学院学报》
2006年第4期93-95,共3页
Journal of Dezhou University
关键词
振动准则
变系数中立型微分方程
oscillation criterion
neutral delay differenlial equations with variant coefficient