期刊文献+

纳米晶Ni_(1-x)Zn_xFe_2O_4铁氧体粉料的制备及其磁性能研究 被引量:17

Synthesis and Magnetic Properties of Nanocrystalline Ni_(1-x)Zn_xFe_2O_4 Ferrite
下载PDF
导出
摘要 采用喷射-共沉淀法制备了纳米晶Ni1-xZnxFe2O4(0≤x≤1.0)铁氧体粉料.通过TG-DSC、XRD、SEM、TEM、BET等测试手段分析了其微观结构和形貌,用振动样品磁强计测量其室温下磁性能.结果表明:喷射-共沉淀法制备的粉料颗粒细小均匀、形状完整.600℃下煅烧1.5h,样品晶粒尺寸为30nm左右,平均颗粒尺寸<100nm.室温下,样品比饱和磁化强度随Zn2+含量增加而变化,当x=0.5时,最大比饱和磁化强度σs为66.8A·m2/kg.当晶粒大小为41nm时,纳米晶.Ni0.5Zn0.5Fe2O4铁氧体矫顽力达到最大值5.06kA/m,随后又随晶粒尺寸增大而减小.这归因于纳米晶软磁材料中强烈的无序磁晶各向异性模式的影响. Nanocrystalline Nil-xZnxFe2O4 ferrite with 0≤ x ≤1, was successfully prepared by a spraying-coprecipitation method. The microstructure was investigated by using TG-DSC, XRD, SEM, TEM as well as BET. Magnetic properties were measured with a vibrating sample magnetometer (VSM) at room temperature. The results show that uniform and fine nanocrystalline Ni1-xZnxFe204 ferrite powders are obtained by the spraying-coprecipitation method. The grain size is about 30 nm calcined at 600℃ for 1.5h. There are a few agglomerates with average sizes below 100nm. The specific saturation magnetization of nanocrystalline Ni1-xZnxFe2O4 ferrite increases with the concent of Zn^2+ at room temperature, and maximum as is 66.8A.m^2/kg as the content of Zn^2+ is around 0.5. When the grain size is 41nm, the coercivity Hc of nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite arrives at 5.06kA/m, and then it decreases with the increase of the grain size. The results may be explained in terms of intense random magnetocrystalline anisotropy model in nanocrystalline materials.
作者 刘银 丘泰
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2007年第3期391-394,共4页 Journal of Inorganic Materials
基金 国防科研民口配套项目
关键词 纳米材料 Ni1-xZnxFe2O4铁氧体 喷射-共沉淀法 磁性能 nanocrystalline materials Ni1-xZnxFe2O4 ferrite spraying-coprecipitation method magnetic properties
  • 相关文献

参考文献14

二级参考文献38

  • 1Chen Dong-Hwang, He Xin-Rong. Materials Research Bulletin, 2001, 36: 1369-1377.
  • 2Fang Qingqing, Lin Yanmei, Yin Ping, et al. Journal of Magnetism and Magnetic Materials, 2001, 234:366-370.
  • 3赵瑶兴 孙样玉.光谱结构与有机结构鉴定[M].北京:中国科学技术大学出版社,1992.60-65.
  • 4Birajadar D S, Devatwal U N, Jadhav K M, et al. Journal of Materials Science, 2002, 37: 1443-1448.
  • 5Chen DongHwang, Chen Yuhyuh. Materials Research Bulletin, 2002, 37: 801-810.
  • 6Devi P Sujatha, Maiti H S. J Mater. Res., 1994, 9 (6): 1357-1362.
  • 7Amitara Chakraborty, P Sujatha Devi, Sukumar Roy, et al. J. Mater. Res., 1994, 9 (4): 986-991.
  • 8Dias A, Moreira R L. Materials Letters, 1999, 39: 69-76.
  • 9Mohan G Ranga, Ravinder D, Ranmana A V, et al. Materials Letters, 1999, 40: 39-45.
  • 10YU Zhong, LAN Zhongwen, WANG Jingmei, WANG Haocai, J. Funct. Mater., 31(5), 484(2000)(余忠,兰中文,王京梅,王豪才,功能材料,31(5),484(2000))

共引文献68

同被引文献189

引证文献17

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部