期刊文献+

色织生产调度中基于ANFIS的整经轴数智能预测 被引量:3

ANFIS-based Method for the Prediction of Trim-Beam Number in Colored-textile Manufacturing Process Scheduling Problem
下载PDF
导出
摘要 分析了整经轴数预测在实际色织生产过程调度中所起的重要作用。由于与整经轴数相关的工艺属性较多且关系复杂,一般的神经网络法难以确定工艺属性与整经轴数之间关系或应用效果不佳,同时神经网络是一个“黑箱”,从中无法对影响整经轴数的因素进行分析,因此提出了基于ANFIS的整经轴数智能预测方法。在该方法中,采用ANFIS作为整经轴数的预测技术,并针对ANFIS输入变量维数较大的问题,提出了一种基于模糊C均值聚类算法的ANFIS结构辨识方法。将该预测方法用于实际的色织生产过程调度的整经轴数预测中,实验结果表明该预测方法是有效的。 Prediction problem of trim-beam number in colored-textile manufacturing process scheduling is discussed. Because there are many properties related with trim-beam number and the neural networks method is only a ‘black box', it is difficult to identify the relationship between properties and trim-beam number by using neural networks. An ANFIS-based method for the prediction of trim-beam number is proposed. In this method, practical manufacturing process data is used to train the ANFIS, and this trained ANFIS is then used to predict the trim-beam number. Meanwhile, aiming at the modeling difficuhy of ANFIS with many inputs, the structure identification technique of ANFIS based on bintree linear partition is improved with fuzzy c-means algorithm. The prediction method is applied to the practical colored-textile mantrfacturing process scheduling problem, and the comparing results show that this ANFIS-based prediction method is effective.
出处 《控制工程》 CSCD 2007年第3期270-273,共4页 Control Engineering of China
基金 国家973计划资助项目(2002CB312200) 国家自然科学基金资助项目(60004010 60274045 60443009)
关键词 预测 ANFIS 结构辨识 整经轴数 模糊C均值聚类 prediction ANFIS structure identification trim-beam number FCM
  • 相关文献

参考文献5

二级参考文献37

  • 1路深,刘民,吴澄,张亚斌,张龙.带流水作业工程项目调度问题的遗传算法[J].控制工程,2005,12(1):11-14. 被引量:3
  • 2刘涛,刘民,张龙,路深,张亚斌.施工项目调度问题的一种智能优化算法[J].控制工程,2005,12(2):104-106. 被引量:1
  • 3[1]Exner O.How to get wrong results from good experimental data:a survey of incorrect applications of regression[J].Journal of Physical Organic Chemistry,1997,10 (11):797-813.
  • 4[4]Duda R O,Hart P E,Stork D G.Pattern classification[M].New York:John Wiley & Sons,2001.
  • 5[5]Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 6[6]Gunn S R.Support vector machines for classification and regression[R].Southapton:Image Speech and Intelligent Systems Research Group,University of Southampton,1997.
  • 7[7]Barzilay Brailovsky V L.On domain knowledge and feature selection using a support vector machine[J].Pattern Recognition Letters,1999,20(5):475-484.
  • 8[8]Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46(1):389-422.
  • 9Panwalkar S,Iskander W.A survey of scheduling rules[J].Operations Research,1977,25(1):45-61.
  • 10Wu D.An expert systems approach for the control and scheduling of flexible manufacturing systems[D].Pennsylvania:Pennsylvania State University,1987.

共引文献30

同被引文献27

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部