期刊文献+

复合六边形空气孔格点光子晶体光纤的色散特性分析 被引量:19

Dispersion Properties of Photonic Crystal Fiber with Composite Hexagonal Air Hole Lattice
原文传递
导出
摘要 提出了一种复合六边形空气孔格点光子晶体光纤,其包层是由两种不同大小的空气孔组合而构成的。利用带有良匹配层(APML)吸收边界的全矢量频域有限差分法(FDFD)对其色散特性进行了数值分析。结果表明,通过调节包层中两种不同尺寸的空气孔的大小以及孔间距这三个参量,可以得到不同水平的平坦色散曲线,甚至超低超平坦的色散曲线。在孔间距A取2.1μm,小尺寸空气孔直径取0.5μm,大尺寸空气孔直径取0.8μm的条件下,在1.48~1.78μm的波长范围内得到了0±0.545ps/(km·nm)的色散。 A new photonic crystal fiber (PCF) with composite hexagonal air hole lattice is proposed and analyzed using the full-vector finite difference frequency domain (FDFD) method with anisotropic perfect match layer (APML) absorbing boundaries. We numerically demonstrate that the flattened dispersion of different levels, even the nearly zero ultra-flattened dispersion characteristics can be achieved through optimizing three geometrical parameters, two for air-hole diameters and one for hole pitch. As an example, the dispersion is 0±0. 545 ps/(km · nm) from 1.48μm to 1.78μm wavelength when A, d1 and d2 are 2.1 μm, 0.5 μm, 0.8 μm respectively. The flattened dispersion feature makes it suitable for the wavelength-division multiplexing communication systems and nonlinear optics.
出处 《光学学报》 EI CAS CSCD 北大核心 2007年第5期935-939,共5页 Acta Optica Sinica
基金 山西省自然科学基金(20041036)资助项目
关键词 光纤光学 色散特性 平坦色散 超低超平坦色散 光子晶体光纤 频域有限差分方法 fiber optics dispersion properties flattened dispersion nearly zero ultra-flattened dispersion photonic crystal fiber finite difference frequency domain method
  • 相关文献

参考文献24

二级参考文献56

  • 1任国斌,王智,娄淑琴,简水生.椭圆孔光子晶体光纤的偏振特性[J].中国激光,2004,31(8):1006-1012. 被引量:3
  • 2娄淑琴,王智,任国斌,简水生.折射率导模高双折射光子晶体光纤[J].光学学报,2004,24(10):1310-1315. 被引量:11
  • 3王晶,苗洪利,冯启元,刘秀敏.单模光纤正常色散区啁啾演变研究[J].中国激光,1997,24(7):627-630. 被引量:4
  • 4J. C. Knight, T. A. Birks, P, St. J, Russellet al.. All silica single mode optical fiber with photonic crystal cladding [J].Opt. Lett., 1996, 21(19):1547-1549.
  • 5T. A. Birks, J. C. Kright, P. St. J. Russell et al.. Endlessly single-mode photonic crystal fiber [J]. Opt. Lett., 1997, 22(13) :961-963.
  • 6R. F, Cregan, B. J. Mangan, J, C. Knight et al., Singlemode photonic band gap guidance of light in air [J]. Science,1999, 285(5433):1537-1539.
  • 7S. Coen, A, H. I.. Chau, R. Leonhardt et al.. White-ligh tsupercontinuum generation with 60-ps pump pulses in a photonlccrystal fiber [J]. Opt, Lett. , 2001, 26(17):1356-1358.
  • 8A. V. Husakou, J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers [J].Phys. Rev. Lett., 2001, 87(20):203901 1-203901 4.
  • 9J. Herrmann, U. Griebner, N, Zhavoronkov et al.,Experimental evidence for supercontinuum generation by fission of higher order solltons in photonic fibers [J]. Phys, Rev,Lett, , 2002, 88(17) : 173901-1-173901-4.
  • 10D. Ouzounov, D. Homoelle, W. Zipfel et al.. Dispersion measurements of microstruetured fibers using femtosecond laser pulses [J]. Opt. Commun. , 2001, 192;219-223.

共引文献86

同被引文献207

引证文献19

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部