期刊文献+

多自由度非线性动力学方程的能量校准算法 被引量:2

AN ENERGY ADJUSTING ALGORITHM FOR THE NONLINEAR DYNAMIC EQUATION WITH MULTI-DEGREES OF FREEDOM
下载PDF
导出
摘要 针对非线性动力学方程,通过Taylor展开和Duhamel积分,得到一个具有待定参数的逐步积分求解公式;通过数学变换,将原动力学方程转换为一个能确定待定参数的能量校准方程;最后将该参数回代入逐步积分公式,得到数值解.数值算例的结果说明了该方法的有效性,可以消除算法阻尼和抑制数值解发散,同时,在大步长的条件下也得到了非常准确而且稳定的结果,可以对系统长期性态进行仿真. An energy adjusting numerical algorithm for the nonlinear dynamic equation with multi-degree of freedom is proposed. First, by the Taylor's expansion and Duhamel integration, an integral iteration formula with an undetermined parameter is obtained. Second, the original dynamical equation is transsormed into an energy adjusting equation to determine the undetermined parameter. Finally, substituting the parameter into the integral iteration formula, an accurate numerical value is obtained. Some examples show that the method can eliminate the algorithm damping and enjoys better stability than the Runge-Kutta method under a large integral step.
出处 《力学学报》 EI CSCD 北大核心 2007年第3期356-364,共9页 Chinese Journal of Theoretical and Applied Mechanics
关键词 能量校准方程 算法阻尼 条件稳定 数值积分 非线性动力学方程 energy adjusting equation, algorithm damping, stability, numerical integral, nonlinear dynamical equation
  • 相关文献

参考文献8

  • 1Bathe KJ,Wilson EL.Numerical Methods in Finite Analysis.Prentice-Hall,Inc.Englewood Cliffs,New Jersey,1976
  • 2钟万勰等.计算结构力学与最优控制.大连:大连理工大学出版社,1995
  • 3Zhong Wanxie,et al.A precise time integration algorithm for nonlinear systems.Proc.of WCCM,1994,3:12~17
  • 4钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6. 被引量:174
  • 5Simo JC,Gonzalez O.Assessment of energy-momentum and sympledtic schemes for stiff dynamic systems.Proceedings of ASME Winter Annual Meeting,New Orleans,December,1993
  • 6Donald Greenspan,Conservative numerical method for x = fx.J of Computational Physics,1984,56:28~41
  • 7Simo JC,Tarnow N,Wong KK.Exact energy momentum conserving algorithm and symplectic schemes for nonlinear dynamics.Computer Methods in Applied Mechanics and Engineering,1992,100:63~116
  • 8Bui QV.Energy conserving and dissipative time finite element schemes for N-body stiff problems.International Journal for Numerical Methods in Engineering,2004,61:1359~1389

二级参考文献4

共引文献173

同被引文献29

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部